K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right)\)

\(\div\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}{\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}\right]\)

\(\div\left[\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)-\left(\sqrt{xy}+1\right)\left(\sqrt{x}+\sqrt{xy}\right)-\left(\sqrt{xy}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{1-xy}\times\dfrac{xy-1}{-2\sqrt{xy}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{xy}}{xy}\)

Áp dụng BĐT AM - GM, ta có:

\(6=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge2\times\sqrt{\dfrac{1}{\sqrt{xy}}}\)

\(\Leftrightarrow\sqrt{xy}\ge\dfrac{1}{9}\)

Ta có:

\(M=\dfrac{\sqrt{xy}}{xy}=\dfrac{1}{\sqrt{xy}}\le\dfrac{1}{\dfrac{1}{9}}=9\)

Max = 9 <=> x = y = \(\dfrac{1}{9}\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+2xy+y}{1-xy}\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+2xy+y}{1-xy}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\cdot\dfrac{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}{x+xy+y+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

5 tháng 7 2021

Đk:\(xy\ne1;x\ge0;y\ge0\)

 \(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+y+2xy}{1-xy}\)

\(=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1+x+y+xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{\left(1+x\right)\left(1+y\right)}{1-xy}\)\(=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+x\right)\left(1+y\right)}=\dfrac{2\sqrt{x}}{1+x}\)

b) Áp dụng AM-GM có:

\(1+x\ge2\sqrt{x}\Leftrightarrow\)\(\dfrac{2\sqrt{x}}{1+x}\le1\)

Dấu "=" xảy ra khi x=1 (tm)

Vậy \(P_{max}=1\)

24 tháng 5 2022

\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+1\right)\)

       \(:\left(1-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(:\left(\dfrac{\text{​​}\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(.\left(\dfrac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(A=1\)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Bạn cần làm gì với biểu thức này?
 

24 tháng 7 2018

\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)

\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)

\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)

\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)

\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)

\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)

\(F=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy}\cdot\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\cdot xy=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

19 tháng 6 2018

Bình phương khử căn đi bạn

20 tháng 6 2018

Có cách nào nhanh hơn không vậy bạn.