Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác HCQB có
M là trung điểm của BC
M là trung điểm của HQ
Do đó: HCQB là hình bình hành
Sửa chỗ đó: Vẽ Q là tia đối với HM
a) Xét tứ giác HCQB có:
M trung điểm BC
HM=MQ => M trung điểm HQ ( vì HM là tia đối với MQ)
Mà 2 đường chéo này cắt nhau tại M
=> HCQB là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (đpcm).
b) Vì HCQB là hbh
=> HC/BQ
mà CE_|_ AB => HC_|_AB
=> CQ_|_EC
nên:CQ_|_AC (đpcm)
HCQB là hbh
=> BE//CQ
Mà CE_|_AB
Nên: QB_|_AB (đpcm)
c) vì M là trung điểm HQ (tia đối)
D trung điểm HP ( tia đối )
=>HM là đường tb của t/gPHQ
Vì DM là đường tb nên DM//PQ
=> BC//PQ
=> BPQC là hình thang (1)
Xét tam giác HPQ có
HD=DP=1/2 HP (gt)
HM=MQ=1/2HQ (gt)
=> HP=HQ
Do đó tam giác HPQ là tam giác cân tại H
=> ^HPQ=^HQP (2 góc tương ứng) (2)
Từ (1) và (2)=> BPQC là hình thang cân (đpcm)
d) ( câu này mình ngại làm b có thể bỏ đi)
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
b) Ta có: Tứ giác BHCK là hình bình hành.
=> HC//BK mà H thuộc FC (gt)
=> FC//BK(1)
FC vuông góc với AB(gt)(2)
Từ (1)(2) suy ra AB vuông góc với BK
Tương tự:
Có: tứ giác BHCK là hbh(cmt)
=> BH//KC mà H thuộc EB(gt)
=> BE// KC mà BE vuông góc với AC=> KC vuông góc với AC
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
(Hình Tự vẽ)
Vì tam giác ABC có \(\widehat{A}=90\)
Mà AE là đường trung tuyến ( Vì E là trung điểm BC )
nên AE là đường trung tuyến ứng với cạnh huyễn
Suy ra \(AE=\frac{BC}{2}\)
hay AE = BE=EC (1)
Mà AE=ED (2)
Từ (1), và (2) suy ra AE=EB=EC=ED
Vì tứ giác ABDC có các đường chéo cắt nhau tại trung điểm mỗi đường và chúng đều bằng nhau
nên ABCD là hình chữ nhật
b, Vì EB=EC;FB=FK
nên EF là đường trung bình tam giác KBC
Suy ra EF//AC (1)
và EF=KC/2=AK=AC(2)
Từ (1) và (2) suy ra EF//AC VÀ EF=AC
Vậy ACEF là hình bình hành
a: Xét tứ giác BHCD có
M là trung điểm chung của BC và HD
=>BHCD là hình bình hành
b: BHCD là hình bình hành
=>BH//CD và BD//CH
BH//CD
CA\(\perp\)BH
Do đó: \(CA\perp\)CD
=>ΔACD vuông tại C
BD//CH
AB\(\perp\)CH
Do đó: AB\(\perp\)BD
=>ΔABD vuông tại B
c: ΔBAD vuông tại B
mà BI là đường trung tuyến
nên IB=IA=ID(1)
ΔCAD vuông tại C
mà CI là đường trung tuyến
nên CI=IA=ID(2)
Từ (1) và (2) suy ra IA=IB=IC=ID
a) Chứng minh tứ giác BHCD là hình bình hành:
Xét tứ giác BHCD:
M là trung điểm của BC (gt)
M là trung điểm của HD (gt)
*Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.
* Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).
b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:
Xét hình bình hành BHCD:
BH // CD (tính chất hình bình hành)
CH // BD (tính chất hình bình hành)
Xét tam giác ABC:
* AF là đường cao (gt) => AF vuông góc với BC
* Mà BH // CD (cmt) => AF vuông góc với CD
Tương tự:
CH // BD (cmt) => AF vuông góc với BD
Kết luận:
* Tam giác ABD vuông tại B (AF vuông góc với BD)
* Tam giác ACD vuông tại C (AF vuông góc với CD)
**c) Chứng minh IA=IB=IC=ID:**
* **Xét tam giác AHD:**
* M là trung điểm của HD (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác AHD
* Vậy IA = ID (tính chất đường trung tuyến trong tam giác)
* **Xét tam giác BCD:**
* M là trung điểm của BC (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác BCD
* Vậy IB = IC (tính chất đường trung tuyến trong tam giác)
* **Kết luận:**
* IA = IB = IC = ID
**Tóm lại:**
* Tứ giác BHCD là hình bình hành.
* Tam giác ABD vuông tại B và tam giác ACD vuông tại C.
* IA = IB = IC = ID.