Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3^2-\left(x-y\right)^2=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]=\left(3-x+y\right)\left(3+x-y\right)\)
\(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3-x-y\right)\)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
a, = (xy-y^2) + (2x-2y) = y(x-y) + 2.(x-y) = (x-y).(y+2)
b, = (x+y)^2 - 9 = (x+y-3).(x+y+3)
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
x^2-2xy+y^2-9z^2
=(x-y)^2-9z^2
=(x-y)^2-(3z)^2
=(x-y-3z)(x-y+3z)
\(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=\left(4y\right)^2-\left(2x+3\right)^2\)\(=\left[4y-\left(2x+3\right)\right]\left(4y+2x+3\right)=\left(4y-2x-3\right)\left(4y+2x+3\right)\)
5x( x - y ) + 12x - 12y
= 5x( x - y ) + 12( x - y )
= ( x - y )( 5x + 12 )
x2 + 2xy - 9 + y2
= ( x2 + 2xy + y2 ) - 9
= ( x + y )2 - 32
= ( x + y - 3 )( x + y + 3 )
\(5x\left(x-y\right)+12x-12y\)
\(=5x\left(x-y\right)+12\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+12\right)\)
\(x^2+2xy-9+y^2\)
\(=\left(x^2+2xy+y^2\right)-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y-3\right)\left(x+y+3\right)\)