K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cΔCDAαΔCBD⇒CDBC=ADBD=ACCD⇒ACBC=CD2BC2

Theo hệ thức lượng trong tam giác vuông ta có: AHBH=HD2HB2

Cần chứng minh: CD2BC2=HD2HB2⇔CDBC=HDHB

Mà CDBC=ADBD. Cần cm: ADBD=HDHB

Mà ΔADBαΔHDB(g.g) nên ta có đpcm

Qua điểm nằm ngoài đường tròn $(O)$, vẽ tiếp tuyến $CD$ với đường tròn $(O)$ ( $D$ là tiếp điểm). Đường thẳng $CO$ cắt đường tròn tại hai điểm $A&# - Hình học - Diễn đàn Toán học

11 tháng 2 2019

AI GIẢI CHI TIẾT DÙM MK CÁI

16 tháng 2 2020

A B O C D E H

17 tháng 2 2020

a, Ap dung tinh chat 2 tiep tuyen cat nhau => \(CD=CE\Rightarrow\Delta CDE\) can

b, Co \(\widehat{CDO}=\widehat{CEO}=90^0\Rightarrow\)

a; Xét ΔOBD có OB=OD

nên ΔOBD cân tại O

Suy ra: \(\widehat{DBO}=\widehat{ODB}\)

mà \(\widehat{ODB}=\widehat{ABC}\)

nên \(\widehat{DBO}=\widehat{ABC}\)

 

29 tháng 1 2022

có phần b ko

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

27 tháng 11 2017

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O;R)

b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)

\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{MOA}=\widehat{MAO}\)

=>ΔMAO cân tại M