K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

- AB < AC < BC nên sắp xếp độ dài các cạnh theo thứ tự từ bé đến lớn là: AB, AC, BC.

\(\widehat C < \widehat B < \widehat A\) nên sắp xếp độ lớn các góc theo thứ tự từ bé đến lớn là: \(\widehat C;\widehat B;\widehat A\)

- Góc lớn nhất là góc A đối diện với cạnh BC. Góc bé nhất là góc C đối diện với cạnh AB.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

- Độ dài các cạnh từ nhỏ đến lớn là c, b, a

- Các góc từ nhỏ đến lớn là C, B, A

- Ta thấy trong tam giác ABC cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại.

19 tháng 9 2023

Góc P đối diện với cạnh MN

Góc M đối diện với cạnh NP

Góc N đối diện với cạnh MP.

Ta có: MN < NP < MP nên \(\widehat P < \widehat M < \widehat N\)( định lí)

Vậy sắp xếp các góc của tam giác MNP theo thứ tự từ bé đến lớn là: \(\widehat P;\widehat M;\widehat N\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có độ dài các cạnh tam giác PQR theo thứ tự từ nhỏ đến lớn là PQ, QR, RP

Vì trong tam giác góc đối diện cạnh lớn hơn thì lớn hơn

Nên ra có các góc tam giác PQR theo thứ tự từ nhỏ đến lớn là R, P, Q

b) Ta có số đo các góc theo tứ tự từ nhỏ đến lớn của tam giác ABC là A, C, B

Vì trong tam giác góc đối diện cạnh lớn hơn thì lớn hơn

Nên ta có các cạnh tam giác ABC theo thứ tự từ nhỏ đến lớn là a, c, b.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Áp dụng định lí tổng ba góc trong một tam giác trong tam giác MNP, có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\ \Rightarrow 47^\circ  + 53^\circ  + \widehat P = 180^\circ \\ \Rightarrow \widehat P = 180^\circ  - 47^\circ  - 53^\circ  = 80^\circ \\ \Rightarrow \widehat M < \widehat N < \widehat P(47^\circ  < 53^\circ  < 80^\circ )\end{array}\)

\( \Rightarrow \) NP < MP < MN ( cạnh đối diện với góc lớn hơn thì lớn hơn)

Vậy các cạnh của tam giác đó theo thứ tự độ dài từ bé đến lớn là NP, MP, MN.

11 tháng 5 2017

A B C D E H K

Trên AB lấy điểm H sao cho ^ACH=600. Gọi CH giao AD tại điểm K. Nối K với E.

Xét \(\Delta\)ACD và \(\Delta\)CAH có:

^ACD=^CAH=800

Cạnh AC chung      => \(\Delta\)ACD=\(\Delta\)CAH (g.c.g)

^CAD=^ACH=600

=> AD=CH (2 cạnh tương ứng). Mà \(\Delta\)AKC đều theo cách vẽ => AC=CK=AK và ^ACK=^CAK=^AKC=60

Ta có: ^AKC=^HKD => ^HKD=600 (1)

AD=CH => AK+KD=CK+KH (2). Thay AK=CK vào (2) => KD=KH (3)

Từ (1) và (3) => \(\Delta\)HKD đều => KD=HD=KH và ^HKD=^KHD=^KDH=600

Xét \(\Delta\)CAE: ^AEC=180- (^CAE+^ACE) = 1800-(800+500)=1800-1300=500

=> ^AEC=^ACE=500 => \(\Delta\)CAE cân tại A => AC=AE. Mà AC=AK (cmt)

=> AE=AK => \(\Delta\)EAK cân tại A.

Ta có: ^EAK=^BAC-^CAK=800-600=200 => ^AKE=^AEK=(1800-200)/2 = 1600/2=800

Lại có: ^EKH=180-(^AKE+^HKD)=1800-(800+600)=1800-1400=400 => ^EKH=400 (4)

Xét \(\Delta\)CAH: ^AHC=1800-(^ACH+^CAH)=1800-(600+800)=1800-1400=400 => ^AHC=400 hay ^EHK=400 (5)

Từ (4) và (5) => \(\Delta\)KEH cân tại E => EK=EH.

Xét \(\Delta\)EKD và \(\Delta\)EHD có:

KD=HD (cmt)

Cạnh ED chung  => \(\Delta\)EKD=\(\Delta\)EHD (c.c.c) => ^KDE=^HDE (2 góc tương ứng)

EK=EH (cmt) 

=> ^KDE=^HDE=^KDH/2. Mà ^KDH=600 (cmt) => ^KDE=^HDE=600/2=300

=> ^KDE=300 hay ^ADE=300.

Vậy góc ADE=300.

3 tháng 12 2017

A. Đúng.

B. Sai.

C. Đúng.

D. Sai.

14 tháng 4 2023

Sắp xếp các gốc theo thứ tự từ lớn đến bé:

Ta có: \(AC>BC>AB\)

\(\Rightarrow\widehat{B}>\widehat{A}>\widehat{C}\)