Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hình dạng đồ thị gia tốc – thời gian của vật là dạng hình sin.
b) Chu kì của gia tốc của vật là T=0,66 s.
c) Mối liên hệ giữa gia tốc cực đại và biên độ của vật là khi gia tốc đạt giá trị cực đại khi ở vị trí biên và cực tiểu khi ở vị trí cân bằng.
d) Độ lệch pha của gia tốc so với li độ của vật là π.
a) Dao động 1 (đường màu xanh) có:
- Biên độ: A1 = 3 cm
- Chu kì: T = 6 s
- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)
Dao động 2 (đường màu đỏ) có:
- Biên độ: A2 = 4 cm
- Chu kì: T = 6 s
- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)
b) Hai dao động có cùng chu kì nên \(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{6}=\dfrac{\pi}{3}\left(rad/s\right)\)
Độ lệch thời gian của hai dao động khi cùng trạng thái: \(\Delta t=2,5s\)
Độ lệch pha: \(\Delta\varphi=\omega.\Delta t=\dfrac{\pi}{3}\cdot2,5=150^o\)
c) Tại thời điểm 3,5 s vật 2 đang ở VTCB nên vận tốc cực đại:
\(v=\omega A_2=\text{ }\dfrac{\pi}{3}\cdot4=\dfrac{4\pi}{3}\left(cm/s\right)\)
d) Tại thời điểm 1,5 s vật 1 đang ở biên dương nên gia tốc có giá trị:
\(a=-\omega^2A_1=-\dfrac{\pi^2}{9}\cdot3=-\dfrac{\pi^2}{3}\left(cm/s^2\right)\)
Độ lớn gia tốc khi đó là \(\dfrac{\pi^2}{3}cm/s^2\)
a) Chu kì và tần số góc của con lắc.
Chu kì T = 1,2 s
Tần số góc là:
\(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{1,2}=5,24\left(rad/s\right)\)
b) Vận tốc cực đại của vật.
Theo đồ thì biết biên độ A = 0,35
\(v_{max}=0,35\left(m/s\right)\)
c) Cơ năng của con lắc.
\(W=\dfrac{1}{2}mv_{max}^2=\dfrac{1}{2}\cdot0,2\cdot0,35^2=0,012\left(J\right)\)
d) Biên độ của vật.
\(A=\dfrac{v_{max}}{\omega}=\dfrac{0,35}{5,24}=0,067\left(m\right)\)
a) Chu kì T = 100 ms = 0,1 s
b) Vận tốc có độ lớn cực đại: vmax = 3 m/s
c) Tần số góc: $\omega = \frac{2 \pi}{T} =\frac{2 \pi}{0.1} = 20 \pi (rad/s)$
Biên độ của dao động: $A=\frac{v_{max}}{\omega} =\frac{3}{20 \pi} \approx 0,048m$
Cơ năng của vật dao động:
$W=W_{dmax}=\frac{1}{2}mv^{2}_{max}\frac{1}{2}.0,15.3^{2}=0,675J$
d) Tại thời điểm 100 ms vận tốc bằng 0 và đang đi theo chiều âm nên vật có vị trí tại biên dương.
Khi đó gia tốc:
$a=-\omega ^{2}A=-(20 \pi)^{2}.0,048=-19,5 m/s^{2}$
Từ đồ thị ta có T = 1,2s → \(\omega = \frac{{2\pi }}{T} = \frac{5}{3}\pi \) (rad/s)
a) Vận tốc cực đại của vật vmax = 0,3 cm/s= 0,003 m/s = ωA → A = 0.0006 (m)
b) Động năng cực đại của vật là Wđmax = = 2.10−6 (J)
c) Theo định luật bảo toàn cơ năng ta có Wtmax = Wđmax = 2.10−6 (J)
d) Độ cứng k của lò xo tính theo công thức: T = \(2\pi \sqrt {\frac{m}{k}} \) → k≈11N/m
Hai dao động có cùng biên độ.
Ở cùng một thời điểm khi dao động 1 ở vị trí cân bằng thì dao động 2 ở vị trí bên và ngược lại.
Dựa vào các đồ thị ở Hình `1.12` ta có:
- Các thời điểm gia tốc của xe bằng `0` là `t={0,1 ; 0,3 ; 0,5} (s)`
- Các thời điểm gia tốc của xe cực đại là `t={0 ; 0,2 ; 0,4 ; 0,6} (s)`
Cách làm: dựa vào đồ thị ở hình `c`, ta chiếu các thời điểm ứng với trục `t` sang trục `a`.
So sánh đồ thị của vận tốc (Hình 3.2) với đồ thị của li độ (Hình 3.1)
- Pha ban đầu của vận tốc là \(\dfrac{\pi}{4}\)
- Pha ban đầu của li độ là 0
Pha ban đầu của vận tốc lớn hơn li độ nên vận tốc sớm pha hơn so với li độ.
a) Hình dạng đồ thị vận tốc – thời gian của vật là dạng hình sin.
b) Chu kì của vận tốc của vật T=0,66 s.
c) Mối liên hệ giữa tốc độ cực đại và biên độ của vật: khi vận tốc cực đại thì biên độ cực tiểu và ngược lại.
d) Độ lệch pha của vận tốc so với li độ của vật là \(\dfrac{\pi}{2}\)