K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2022

Cứu với ;-;

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

28 tháng 12 2021

B

23 tháng 3 2023

thêm \(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2}\ne0\) nên nó z nha :Đ giải thích ấy

23 tháng 3 2023

`<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0`

`<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0`

`<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0`

`<=>x+2022=0`

`<=>x=-2022`

23 tháng 6 2020

Bài làm:

Ta có: \(2020^x\)chẵn với mọi x mà 2021 lẻ

=> \(x^{2020+x}\)lẻ

Xét: x = 1 => 2020 +1 =2021 (hợp lý)

Vậy x = 1 thỏa mãn

Xét: x > 1 => 2020> 2021 (vô lý)

Xét: x < 1 => 2020x < 2020 và x2020+x < 0

=> 2020x + x2020+x < 2021 (vô lý)

Vậy x = 1

=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)

=>x+2022=0

=>x=-2022

11 tháng 2 2020

1.Tìm điều kiện xác định của phương trình:

a) 1x2+1 -4xx =0 (1)

b) 1x2−1 -2020 (2)

c) x2020x−2019 +

a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (1) xác định là x ≠ 0.

b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0

\(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1

Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.

c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.

11 tháng 2 2020

cảm ơn bạn nha .ha