K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

sửa lại đề đi \(\sqrt{a+\sqrt{b}}\) hay căn a+căn b

3 tháng 8 2017

đk \(a>0;b>0;a\ne b\)\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b+\sqrt{ab}+b+a-\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}.\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{2\left(a+b\right)}-\frac{\sqrt{a}+\sqrt{b}}{2}\)

\(R=\frac{\sqrt{a}-\sqrt{b}}{2}-\frac{\sqrt{a}+\sqrt{b}}{2}=\frac{-2\sqrt{b}}{2}=-\sqrt{b}\)

b) \(R=-1\Leftrightarrow-1=-\sqrt{b}\Leftrightarrow1=\sqrt{b}\Leftrightarrow b=1\)

b=(a+1)2 <=> 1=(a+1)2 <=> a+1=1 <=> a=0

vậy a = 0 ; b=1

NV
20 tháng 9 2019

ĐKXĐ:....

\(A=\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(A=\left(a+2\sqrt{a}+1\right)\frac{1}{\left(1+\sqrt{a}\right)^2}=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

\(B=\frac{2}{\sqrt{ab}}:\left(\frac{\sqrt{b}-\sqrt{a}}{\sqrt{ab}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(B=\frac{2}{\sqrt{ab}}.\frac{\sqrt{ab}^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(B=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

ĐK: $a, b>0$
\(A=\frac{\sqrt{ab}(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}:\frac{2}{\sqrt{a}+\sqrt{b}}=(\sqrt{a}-\sqrt{b}).\frac{\sqrt{a}+\sqrt{b}}{2}=\frac{a-b}{2}\)

\(B=\frac{(\sqrt{a}+1).\sqrt{a}(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}{(a-b).(a\sqrt{a}+a)}=\frac{(a+\sqrt{a})(a-b)}{(a-b)(a\sqrt{a}+a)}=1\)

17 tháng 6 2020

A=(2+\(\frac{3+\sqrt{3}}{\sqrt{3}+1}\)) . (2-\(\frac{3-\sqrt{3}}{\sqrt{3}-3}\))

=(\(2+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\)) . (\(2-\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\))

=(\(2+\sqrt{3}\)) . (\(2-\sqrt{3}\))

=22-(\(\sqrt{3}\))2=4-3=1

B=(\(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\)) . (\(a\sqrt{b}-b\sqrt{a}\))

=(\(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\)) . (\(a\sqrt{b}-b\sqrt{a}\))

=(\(\frac{\sqrt{b}.\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}.\sqrt{a}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\)). (a\(\sqrt{b}-b\sqrt{a}\))

=\(\frac{b-a}{\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)}.\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

=b-a

Ta có: \(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\cdot\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)

\(=\frac{2\left(\sqrt{3}+1\right)+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\left(\sqrt{3}-1\right)-3+\sqrt{3}}{\sqrt{3}-1}\)

\(=\frac{2\sqrt{3}+2+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\sqrt{3}-2-3+\sqrt{3}}{\sqrt{3}-1}\)

\(=\frac{3\sqrt{3}+5}{\sqrt{3}+1}\cdot\frac{3\sqrt{3}-5}{\sqrt{3}-1}\)

\(=\frac{2}{2}=1\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:
ĐKXĐ:.............

\(C=\frac{a+b}{(\sqrt{a}-\sqrt{b})^2}-\frac{2}{\sqrt{ab}}:\left(\frac{\sqrt{b}-\sqrt{a}}{\sqrt{ab}}\right)^2=\frac{a+b}{(\sqrt{a}-\sqrt{b})^2}-\frac{2}{\sqrt{ab}}.\frac{ab}{(\sqrt{a}-\sqrt{b})^2}\)

\(=\frac{a+b}{(\sqrt{a}-\sqrt{b})^2}-\frac{2\sqrt{ab}}{(\sqrt{a}-\sqrt{b})^2}=\frac{a-2\sqrt{ab}+b}{(\sqrt{a}-\sqrt{b})^2}=\frac{(\sqrt{a}-\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2}=1\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

1.

Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)

\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)

\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)

\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)

\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)

2.

\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)

\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)

\(=(a-1)^2\)

3.

\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

4. Bạn xem lại đề xem đã đúng chưa?

5.

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)