Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi, nhìn nhầm:
A = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1
3A = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3
=> 4A = 3A + A = 3^101 + 1
A = \(\frac{3^{101}+1}{4}\)
B = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1
3B = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3
Cộng vế với vế triệt tiêu, ta có :
4B = 3^101 + 1
B = \(\frac{3^{101}+1}{4}\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
A = 2100 - 299 + 298 - 297 + ...+ 22 - 2
2.A = 2101 - 2100 + 299 - 298 + ...+ 23 - 22
A + 2.A = 2101 - 2 => 3.A = 2101 - 2 => A = (2101 - 1) / 3
B : tương tự
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
1.
B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
3B + B = ( 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3 ) + ( 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1 )
4B = 3101 + 1
B = \(\frac{3^{101}+1}{4}\)
\(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3^1+1\)
=) \(3A=3.\left(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\right)\)
= \(3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3^1\)
=) \(3A+A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3^1+3^{100}-3^{99}\)
+ \(3^{98}-3^{97}+...+3^2-3^1+1\)
=) \(4A=3^{101}+1\)
=) \(A=\frac{3^{101}+1}{4}\)
Dùng sai phân như sau
\(3Q=3^{101}-3^{100}+3^{99}-...-3^2+3\)
\(Q=3^{100}-3^{99}+3^{98}-...-3+1\)
Cộng 2 biểu thức trên theo vế,ta có:
\(4Q=3^{101}+1\Rightarrow Q=\frac{3^{101}+1}{4}\)
tính riêng:
\(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\)
=\(\left(\frac{100}{99}-1\right)+\left(\frac{100}{98}-1\right)+\left(\frac{100}{97}-1\right)+...+\left(\frac{100}{2}-1\right)+99\)
=\(100.\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)+99-98\)
=\(100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)\)
vậy \(\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=100\)
chúc bạn học tốt ^^