Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50
5 A = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51
5 A - A = ( 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51 )
- ( 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50 )
4 A = 5 ^ 51 - 5
A = \(\frac{5^{51}-5}{4}\)
A=5^1+5^21+5^3+...+5^50
5^1A=5(5^1+5^2+5^3+..+5^50)
5A=5^2+5^3+..+5^50+5^51
5A-A=(5^2+5^3+..+5^50+5^51)-(5^1+5^2+5^3+..+5^50)
4A=5^51-5^1
A=(5^51-5^1):4
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
Ai nhanh mik k thề đó
Thu gọn : 5 + 5^2 + 5^3 + ... + 5^49 + 5^50
đặt tên biểu thức trên là A
ta có :
\(A=5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5.\left(5+5^2+5^3+...+5^{49}+5^{50}\right)\)
\(5A=5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(5+5^2+5^3+...+5^{49}+5^{50}\right)\)
\(4A=5^{51}-5\)
\(A=\left(5^{51}-5\right):4\)
có bài tương tự ròi bn tìm đc ko?
5 thành 51
1+1+2+3+4+.......+49+50 rồi tính số số hạng,tìm tổng.cuối cùng +1