K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{50}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{50}}\)

\(\Rightarrow A=1-\frac{1}{2^{50}}\)

15 tháng 7 2017

   \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)

  \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)

              \(A=1-\frac{1}{2^{50}}\)

               \(A=\frac{2^{50}-1}{2^{50}}.\)

9 tháng 7 2020

Trả lời 

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\)  \(\left(a\ge0.a\ne1\right)\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{1}{\left(a+1\right)^2}-\frac{1}{\left(a-1\right).\left(a+1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{a-1-a-1}{\left(a+1\right)^2.\left(a-1\right)}\right]\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.0\)

\(B=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)

\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)ĐK\left(a\ge0;a\ne1\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)

\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1-a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}\right)\)

\(=\frac{1}{a+1}\)

Vậy \(B=\frac{1}{a+1}\)

14 tháng 1 2017

\(A=\frac{\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right)}{\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)}\)

\(A=\frac{\left(\frac{15}{10}-\frac{4}{10}+\frac{1}{10}\right)}{\left(\frac{18}{12}-\frac{8}{12}+\frac{1}{12}\right)}\)

\(A=\frac{\frac{6}{5}}{\frac{11}{12}}=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}\times\frac{12}{11}\)

\(A=\frac{72}{55}\)

A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)

A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)

Hok tốt

4 tháng 3 2016

A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)}=\frac{1}{2014}\)                                                                                                                                                                                                       

4 tháng 3 2016

A=\(\frac{1}{2014}\)

27 tháng 2 2016

xét mẫu ta được 

(2012/2+1)+(2011/3+1)+...+(1/2013+1)

=2014/2+2014/3+...+2014/2013

=2014(1/2+1/3+...+1/2013) (1)

mà tử bằng 1/2+1/3+1/4+..+1/2013 (2)

(1),(2)=> A=1/2014

19 tháng 2 2017

xét mẫu

2012+2012/2+2011/3+...+1/2013 

=(1+1+1+…+1) + 2012/2+2011/3+...+1/2013 

2012 số hạng

=(1 + 2012/2) + (1 + 2011/3) + ….+ (1+1/2013) 

=2014/2 + 2014/3 + …. + 2014/2013 

=2014 x (1/2 + 1/3 + … + 1/2013) 

=))

(1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013) =

(1/2+1/3+1/4+...+1/2013)/ 2014 x (1/2+1/3+1/4+...+1/2013) =  1/2014

19 tháng 10 2015

\(\text{ĐKXĐ: }x\ne1\)

\(M=\frac{a^2+2}{a^3-1}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}\)

\(=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a^2+2+a^2-1-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a^2-a}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{a^2+a+1}\)

23 tháng 1 2016

1/2+1/3+1/4+..+1/2013

2012+2012/2+2011/3+...+1/2013

=1/2+1/3+1/4+...+1/2013

(2012/2+1)+(2011/3+1)+...+(1/2013+1)

=1/2+1/3+1/4+...+1/2013

2014/2+2014/3+...+2014/2013

=1/2+1/3+1/4+...+1/2013

2014(1/2+1/3+...+1/2013)

=1/2014

29 tháng 3 2017

=1/2014 còn đâu tự làm nhé!!!!!!!!!!!!!^^^^^^^^^^^@@@@@@@########$$$$$$*********