K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

15 tháng 8 2021

ai giúp với ạ :<

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{5\sqrt{x}-15}{3x-59}\)

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

21 tháng 12 2023

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

21 tháng 12 2023

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

6 tháng 2 2022

nhờ bạn có thể giải chi tiết cho mình câu 1b đc ko

26 tháng 9 2018

\(\dfrac{5\left(4+\sqrt{11}\right)}{\left(4+\sqrt{11}\right)\left(4-\sqrt{11}\right)}+\dfrac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}-\dfrac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{\sqrt{7}-5}{2}\)\(=\dfrac{\left(4+\sqrt{11}\right)5}{16-11}+\dfrac{3-\sqrt{7}}{9-7}-\dfrac{6\left(\sqrt{7}+2\right)}{7-4}-\dfrac{\sqrt{7}-5}{2}\)

\(=4+\sqrt{11}-\dfrac{3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\dfrac{\sqrt{7}-5}{2}=\dfrac{8+2\sqrt{11}-3+\sqrt{7}-4\sqrt{7}-8-\sqrt{7}+5}{2}=\dfrac{2\sqrt{11}-4\sqrt{7}+2}{2}=1+\sqrt{11}-2\sqrt{7}\)

26 tháng 9 2018

Mk lam sai oy

1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)

5 tháng 12 2021

Giải giúp e chi tiết hơn được không ạ

 

12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)

12 tháng 10 2022

a: \(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)

\(=4+\sqrt{11}-3\sqrt{7}\)

b: \(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)

\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{x+2\sqrt{xy}+y}{x-y}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)