Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
a)
\(2\sqrt{5}\)+ I1-\(\sqrt{5}\)I
\(2\sqrt{5}\)+1-\(\sqrt{5}\)
1+\(\sqrt{5}\)
b: \(=\dfrac{\sqrt{3}-1+\sqrt{3}+1-4\sqrt{3}}{2}=-\sqrt{3}\)
1.
A= \(2\sqrt{6}\) + \(6\sqrt{6}\) - \(8\sqrt{6}\)
A= 0
2.
A= \(12\sqrt{3}\) + \(5\sqrt{3}\) - \(12\sqrt{3}\)
A= 0
3.
A= \(3\sqrt{2}\) - \(10\sqrt{2}\) + \(6\sqrt{2}\)
A= -\(\sqrt{2}\)
4.
A= \(3\sqrt{2}\) + \(4\sqrt{2}\) - \(\sqrt{2}\)
A= \(6\sqrt{2}\)
5.
M= \(2\sqrt{5}\) - \(3\sqrt{5}\) + \(\sqrt{5}\)
M= 0
6.
A= 5 - \(3\sqrt{5}\) + \(3\sqrt{5}\)
A= 5
This literally took me a while, pls sub :D
https://www.youtube.com/channel/UC4U1nfBvbS9y_Uu0UjsAyqA/featured
\(A=\dfrac{2-\sqrt{a}-\sqrt{a}-3}{2\sqrt{a}+1}=-1\)
\(B=\dfrac{1}{1-\sqrt{2+\sqrt{3}}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}-1}-\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}+1}\)
\(=\dfrac{2-\sqrt{6}+\sqrt{2}-2+\sqrt{6}+\sqrt{2}}{5-2\sqrt{6}-1}\)
\(=\dfrac{2\sqrt{2}}{4-2\sqrt{6}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}=-\sqrt{2}-\sqrt{3}\)
a) Ta có: \(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
\(=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
b) Ta có: \(B=\dfrac{a-2\sqrt{a}-3}{a-9}\)
\(=\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}+3}\)
c) Ta có: \(C=\sqrt{x-1-2\sqrt{x-2}}\)
\(=\sqrt{x-2-2\cdot\sqrt{x-2}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}\)
\(=\left|\sqrt{x-2}-1\right|\)
`a)A=(x+sqrt5)(x^2+2xsqrt5+5)`
`=(x+sqrt5)/(x+sqrt5)^2=1/(x+sqrt5)`
`b)B=(a-2sqrta-3)/(a-9)(a>=0,a ne 9)`
`=(a+sqrta-3sqrta-3)/(a-9)`
`=((sqrta+1)(sqrta-3))/((sqrta-3)(sqrta+3))`
`=(sqrta+1)/(sqrta+3)`
`c)C=sqrt{x-1-2sqrt{x-2}}(x>=2)`
`=sqrt{x-2-2sqrt{x-2}+1}`
`=sqrt{(sqrt{x-2}-1)^2}`
`=|sqrt(x-2)-1|`
\(a,\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)
\(b,A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\)
\(\Rightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\left(\sqrt{a}-5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)
\(\Rightarrow A=\dfrac{a+5\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\sqrt{a}-25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)
\(\Rightarrow A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)
\(\Rightarrow A=\dfrac{a-10\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{a}-5\right)^2}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)
a: \(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)
b: \(A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}=\dfrac{\left(\sqrt{a}-5\right)^2}{a-25}=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)
a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\dfrac{2}{\sqrt{x}+1}\)
c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)
d: |B|=A
=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)
=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)
=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)
=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)
\(a,A=\dfrac{2\sqrt{x}+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\)