K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6

\(D=1-\dfrac{2}{5\cdot10}-\dfrac{2}{10\cdot15}-\dfrac{2}{15\cdot20}-...-\dfrac{2}{2020\cdot2025}\)

\(D=1-\left(\dfrac{2}{5\cdot10}+\dfrac{2}{10\cdot15}+\dfrac{2}{15\cdot20}+...+\dfrac{2}{2020\cdot2025}\right)\)

Đặt \(A=\dfrac{2}{5\cdot10}+\dfrac{2}{10\cdot15}+\dfrac{2}{15\cdot20}+...+\dfrac{2}{2020\cdot2025}\)

\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{10}\right)+\dfrac{2}{5}\cdot\left(\dfrac{1}{10}-\dfrac{1}{15}\right)+\dfrac{2}{5}\cdot\left(\dfrac{1}{15}-\dfrac{1}{20}\right)+...+\dfrac{2}{5}\cdot\left(\dfrac{1}{2020}-\dfrac{1}{2025}\right)\)

\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{20}+...+\dfrac{1}{2020}-\dfrac{1}{2025}\right)\)

\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{2025}\right)\)

\(A=\dfrac{2}{5}\cdot\dfrac{404}{2025}\)

\(A=\dfrac{808}{10125}\)

Thay vào D được:

\(D=1-\dfrac{808}{10125}\)

\(D=\dfrac{9317}{10125}\)

Vậy \(D=\dfrac{9317}{10125}\)

24 tháng 10 2017

a) \(D=\left(2\dfrac{2}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\right)\div\left(-\dfrac{3}{17}\right)\)

\(D=\dfrac{32}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\times\dfrac{-17}{3}\)

\(D=\dfrac{-3}{5}\)

b) \(\dfrac{1}{2}-\dfrac{1}{3\times7}-\dfrac{1}{7\times11}-\dfrac{1}{11\times15}-\dfrac{1}{15\times19}-\dfrac{1}{19\times23}-\dfrac{1}{23\times27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+\dfrac{1}{15\times19}+\dfrac{1}{19\times23}+\dfrac{1}{23\times25}\right)\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+\dfrac{4}{11\times15}+\dfrac{4}{15\times19}+\dfrac{4}{19\times23}+\dfrac{4}{23\times27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{9-1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\dfrac{1}{4}\times\dfrac{8}{27}\)

\(=\dfrac{1}{2}-\dfrac{2}{27}\)

\(=.....\)

Đó đến đây bn tự lm nốt. Câu c bn lm tương tự.

Mình cho bn dạng này, nếu bn chưa biết (để lm câu c)

\(\dfrac{x}{y\left(y+x\right)}=\dfrac{x}{y}-\dfrac{x}{y+x}\)

Chúc bn học tốtbanhbanhbanhbanhbanh

4 tháng 10 2021

\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)

4 tháng 10 2021

\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)

\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)

               \(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)

\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)

\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)

= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]

= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)

= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3

= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x

= -8x4 + 5x3 + 24x2 – 6x

\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)

6 tháng 10 2023

A=\(\dfrac{1\cdot4}{2\cdot3}\) \(\cdot\dfrac{2\cdot5}{3\cdot4}\) ...\(\dfrac{2015\cdot2018}{2016\cdot2017}\)

A=\(\dfrac{1\cdot2\cdot3\cdot...\cdot2015}{1\cdot2\cdot3\cdot...\cdot2016}\) \(\cdot\dfrac{4\cdot5\cdot...\cdot2018}{3.4\cdot...\cdot2017}\)

A=\(\dfrac{1}{2016}\) \(\cdot\dfrac{2018}{3}\) =\(\dfrac{1009}{336}\)

 

 

2 tháng 10 2021

\(C=\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=3\\ D=\dfrac{3^{24}\cdot3^{10}}{3^{21}\cdot3^{11}}=\dfrac{3^{34}}{3^{32}}=3^2=9\\ F=\dfrac{2^{45}\cdot5^{14}}{5^{15}\cdot2^{47}}=\dfrac{1}{2^2\cdot5}=\dfrac{1}{20}\\ G=\dfrac{2^2\cdot5^2\cdot5^3}{2^3\cdot5^4}=\dfrac{1\cdot5}{2}=\dfrac{5}{2}\)

2 tháng 10 2021

C=3

D=9

F=1/20

G=5/2

Em ko giải chi tiết vì nó lâu

Mong thông cảm!

26 tháng 8 2023

\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)

\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)

\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)

\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{36234378}\)

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)

16 tháng 6 2018

Bài 1:

a) \(B=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{61.63}-\frac{2}{63.65}\)

\(B=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{61.63}+\frac{2}{63.65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{61}-\frac{1}{63}+\frac{1}{63}-\frac{1}{65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(B=1-\frac{62}{195}\)

\(B=\frac{133}{195}\)

b) \(C=1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(C=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\frac{19}{100}\)

\(C=1-\frac{19}{500}\)

\(C=\frac{481}{500}\)

bài 2 thì bn lm như bn Phùng Minh Quân nha!

16 tháng 6 2018

Câu 1 : mình ko hiểu đề bài cho lắm ~.~ 

Câu 2 : 

Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\)

\(\Rightarrow\)\(A=10+\left|\frac{1}{2}-x\right|\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|\frac{1}{2}-x\right|=0\)

\(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(10\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

4 tháng 10 2021

ừ bài nâng cao mà bạn ơi :)))

4 tháng 10 2021

\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)

\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)

\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)

\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)