Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng HĐT: $(a-b)^3=a^3-b^3-3ab(a-b)$ cho cả hai bạn.
a.
$M=x^3-1-3x(x-1)-3x(x-1)^2+3x^2(x-1)+x^3$
$=2x^3-1+3x(x-1)[-1-(x-1)+x]$
$=2x^3-1+3x(x-1).0=2x^3-1$
b.
$D=[(x-y)-x]^3=-y^3$
a) \(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)=6a^2b+b^3=b\left(6a^2+b^2\right)\)
b) \(\left(x+y\right)^3+\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)+\left(x^3-3x^2y+3xy^2-y^3\right)=2x^3+6xy^2=2x\left(x^2+3y^2\right)\)
a) \(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
b) \(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)
a: \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3a^2b+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=x^3+3x^2+3x+1\)
b)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3+3.2x.3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
c)
\(x^3+3.x^2.\dfrac{1}{2}+3.x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=x^3+1,5x^2+0,75x+0,125\)
d)
=\(\left(x^2\right)^3-3.\left(x^2\right)^2.2+3.x^2.2^2-2^3\)
\(=x^5-6x^4+12x^2-8\)
e)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)
c: Ta có: \(x^3-12x^2+48x-64=0\)
\(\Leftrightarrow x-4=0\)
hay x=4
c: Ta có: \(x^3-12x^2+48x-64=0\)
\(\Leftrightarrow x-4=0\)
hay x=4
\(D=x^3-3x^2y+3xy^2-y^3-3x^3+6x^2y-3xy^2+3x^3-3x^2y-x^3\\ D=-y^3\)