K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^{16}-y^{16}\right)+xy^{16}=x^{17}-xy^{16}+xy^{16}=x^{17}\)

15 tháng 10 2023

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\\ =x\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^{16}-y^{16}\right)+xy^{16}\\ =x^{17}-xy^{16}+xy^{16}\\ =x^{17}\)

15 tháng 10 2023

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\)

\(=x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^{16}-y^{16}\right)+xy^{16}\)

\(=x^{17}-xy^{16}+xy^{16}\)

\(=x^{17}\)

2 tháng 10 2017

Ta có:

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy Bài tập: Phép cộng các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

13 tháng 11 2021

2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

3 tháng 3 2019

Ta có:

 

x x - y - y y - x = x 2 - x y - y 2 - x y = x 2 - x y - y 2 + x y = x 2 - y 2

 

Chọn (B) x 2 - y 2

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

15 tháng 10 2023

\(\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

\(=\left(x-y+x+y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

15 tháng 10 2023

\(\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)

3 tháng 8 2023

\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)

Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)

\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)

\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)