Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 2011 => x + 1 = 2012
=> A = x10 - ( x + 1 )x9 + ( x + 1)x8 - ( x+ 1)x7 + ( x + 1 )x6 - ( x + 1 )x5+ ( x + 1 )x4 - ( x + 1 )x3 + ( x + 1)x2 - ( x + 1 )x + 2012
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7+ x6- x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + 2012
= -x + 2012
Thay x=2011 vào ta được: ( - 2011 ) + 2012 = 1
bài này chị bt làm rồi nhưng làm hơi dài
chị bận tối chị viết cho nha
hihihhihhi
12/
x=2011
=>2012=x+1
thay x+1=2012 ta được:
x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1
=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1
=x-1
thay x=2011 ta được:
2011-1=2010
Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010
x4+2012x2+2012x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
x4+2012x2+2011x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
Lời giải:
Ta có:
\(x^4+2012x^2-2011x+2012=x^4+x^2+2011(x^2-x+\frac{1}{4})+\frac{6037}{4}\)
\(=x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\)
Vì \(x^4\geq 0,x^2\geq 0, (x-\frac{1}{2})^2\geq 0, \forall x\)
\(\Rightarrow x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\geq \frac{6037}{4}>0\) với mọi $x$
Ta có đpcm.
Ta có : \(x^2+2012x+2011^{2011}-1=0\)
\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)
\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)
Giả sử x là một số nguyên thì VT là một số chính phương.
Khi đó VP cũng là số chính phương.
Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.
Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.
Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên.
Ta có : \(x=2011\Rightarrow x+1=2012\)
Khi đó :
\(x^{10}-2012x^9+2012x^8-2012x^7+....-2012x+2012\)
\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^9-x^8+x^8+x^7-x^7-x^6+...-x^2-x+x+1\)
\(=1\)