Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{a}=x\\\sqrt[3]{b}=y\end{matrix}\right.\) thì ta có:
\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}=\dfrac{\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}=x^2-xy+y^2\)
Vậy \(Q=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)
\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
b: \(A=\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
\(=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)
\(\Leftrightarrow A^3=4+\sqrt{15}+4-\sqrt{15}+3\cdot A\cdot1\)
\(\Leftrightarrow A^3-3A-8=0\)
hay \(A\simeq2.49\)
a: \(B=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow B^3=5-\sqrt{17}+5+\sqrt{17}+3\cdot B\cdot2=10+6B\)
\(\Leftrightarrow B^3-6B-10=0\)
hay \(B\simeq3.05\)
a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)
=-1
b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
=1
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???
b.
\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)
\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)
\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)
Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
Thay a = 2√3 và b = √3 vào P, ta được:
P = 2√3 - √3 = √3
Vậy...
a) Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
b) Thay \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) vào biểu thức P=a-b, ta được:
\(P=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
Vậy: Khi \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) thì \(P=\sqrt{3}\)
Đặt \(\sqrt[3]{a}=x;\sqrt[3]{b}=y\)
=>\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}\)
\(=\dfrac{x^4+2x^2y^2+y^4-x^2y^2}{x^2+xy+y^2}\)
\(=\dfrac{\left(x^2+y^2\right)^2-\left(xy\right)^2}{x^2+xy+y^2}=\dfrac{\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}\)
\(=x^2-xy+y^2\)
\(=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)