Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)
\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)
\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)
\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)
\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)
\(=7-\sqrt{21}+\sqrt{21}-3\)
\(=4\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
b: \(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)
\(=50-10\sqrt{21}+10\sqrt{21}-42=8\)
a: \(A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\)
=>\(A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{2-1}=2\sqrt{2}+2\)
=>\(A=\sqrt{2\sqrt{2}+2}\)
Đặt \(B=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2+\sqrt{2}}\)
=>\(B=\sqrt{2\sqrt{2}+2}-\sqrt{2+\sqrt{2}}\)
=>\(B^2=2\sqrt{2}+2+2+\sqrt{2}-2\sqrt{\sqrt{2}\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)
=>\(B^2=4+3\sqrt{2}-2\sqrt[4]{2}\left(2+\sqrt{2}\right)\)
=>\(B\simeq0,35\)
\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}\)
\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+2.3\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2.3\sqrt{5}+5}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{3+2.\sqrt{3}.3\sqrt{2}+18}=\sqrt{\left(\sqrt{3}+3\sqrt{2}\right)^2}=\sqrt{3}+3\sqrt{2}\)
\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}\)
Nên \(E=\frac{\sqrt{5}+1+3+\sqrt{5}}{\sqrt{2}}.\left(3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\right)\)
\(=\frac{4+2\sqrt{5}}{\sqrt{2}}.2.3.\sqrt{2}=24+12\sqrt{5}\)
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{7}+\left(\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)=2\left(25-21\right)=2\cdot4=8\)
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{5+\sqrt{21}}\sqrt{5-\sqrt{21}}\sqrt{5+\sqrt{21}}\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{4}\sqrt{10+2\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\left(7-3\right)=2.4=8\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)
\(=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\)
\(=2\left(25-21\right)=8\)
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)
Lời giải:
Đặt biểu thức là $A$. Ta có:
\(A=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{2}.\sqrt{5-\sqrt{21}}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{10-2\sqrt{21}}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{(\sqrt{7}-\sqrt{3})^2}\)
\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})|\sqrt{7}-\sqrt{3}|=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})^2\)
\(=(5+\sqrt{21})(10-2\sqrt{21})=2(5+\sqrt{21})(5-\sqrt{21})=2(5^2-21)=8\)
Ta có: \(\left(5+\sqrt{21}\right)\cdot\left(\sqrt{14}-\sqrt{6}\right)\cdot\sqrt{5-\sqrt{21}}\)
\(=\dfrac{\left(10+2\sqrt{21}\right)\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{10-2\sqrt{21}}}{2}\)
\(=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2\cdot\left(\sqrt{7}-\sqrt{3}\right)^2}{2}\)
=8