K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

co ei giup tui vơi

2 tháng 10 2016
Cái đề ghi rõ xíu đi. Đọc không có ra
14 tháng 6 2018

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

17 tháng 8 2016

N=2(2x + 5 )^2 - 3(1 + 4x )(1 - 4x)

= 2 (4x^2 + 20x + 25) - 3(1 - 16x^2)

= 8x^2 + 40x + 50 - 3 + 48x^2

= 56x^2 + 40x - 47

(.....????!!!!!!.....)

8 tháng 8 2016

1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)

2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)

21 tháng 7 2018

\(M=\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

\(=\dfrac{n^3+n^2+n^2+n-n-1}{\left(n+1\right).\left(n^2-n+1\right)+2n.\left(n+1\right)}\)

\(=\dfrac{n^2\left(n+1\right)+n\left(n-1\right)-\left(n+1\right)}{\left(n+1\right).\left(n^2-n+1+2n\right)}\)

\(=\dfrac{\left(n+1\right).\left(n^2+n-1\right)}{\left(n+1\right).\left(n^2+n+1\right)}\)

\(=\dfrac{n^2+n-1}{n^2+n+1}\)

22 tháng 7 2018

hàng thứ 3 là dấu + không phải dây - nha

14 tháng 10 2017

\(\sqrt{3-2\sqrt{2}}=\sqrt{1-2\sqrt{2}+2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|\)

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{6}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}=\left|\sqrt{2}-\sqrt{3}\right|\)

\(1< \sqrt{2};\sqrt{2}< \sqrt{3}\)

\(\Rightarrow\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}\)

                                                                      \(=\sqrt{3}-1\)

14 tháng 10 2017

ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}.\)

\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}=\sqrt{3}-1\)

9 tháng 1 2016

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

30 tháng 12 2022

Đặt \(\sqrt[3]{2}=a\)

\(A+\dfrac{a+a^2+a^3}{a^2+a+1}=\dfrac{a\left(a^2+a+1\right)}{a^2+a+1}=a=\sqrt[3]{2}\)

18 tháng 6 2017

Ta có: A = \(\sqrt{\left(\sqrt{6}-2\sqrt{2}\right)^2}-\sqrt{24-12\sqrt{3}}\)

= \(\left|\sqrt{6}-2\sqrt{2}\right|\) \(-\sqrt{18-2.6\sqrt{3}+6}\)

= \(2\sqrt{2}-\sqrt{6}-\sqrt{\left(\sqrt{18}-\sqrt{6}\right)^2}\)

= \(2\sqrt{2}-\sqrt{6}-\sqrt{18}+\sqrt{6}\)

= \(2\sqrt{2}-3\sqrt{2}=-\sqrt{2}\)