Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\); x khác 2; 3
Ta có:
\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)
\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)
=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)
\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)
ĐK \(\hept{\begin{cases}x\ge0\\x\ne1;x\ne2\end{cases}}\)
Ta có \(P=\frac{x\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\left(x\sqrt{x}+x\right)-\left(x+\sqrt{x}\right)-2\left(\sqrt{x}+1\right)}+\frac{x\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\left(x\sqrt{x}-x\right)+\left(x-\sqrt{x}\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1+x+2\sqrt{x}+1}{x-1}\)
\(=2.\frac{x+1}{x-1}\)
đáp án nè ko bít có đúng đâu \(\frac{-2\sqrt{x}}{-6\sqrt[]{x}}\)