K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)

\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)

\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)

\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)

\(=2x^2+6x+9\)

=>\(M\left(x\right)=2x^2+6x+9\)

\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)

\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)

=>\(x=-\dfrac{3}{2}\)

15 tháng 1

>=9/2 là sao vậy

28 tháng 12 2021

Câu 1: C

Câu 2: =x(x-2)*(x+2)

31 tháng 10 2020

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3

b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

Câu 1:

a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)

\(=x^3+2^3+x\left(1-x^2\right)\)

\(=x^3+8+x-x^3\)

=x+8

b: Khi x=-4 thì A=-4+8=4

c: Đặt A=-2

=>x+8=-2

=>x=-10

Câu 2:

a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)

b: \(5x^3+10x^2+5x\)

\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)

\(=5x\left(x^2+2x+1\right)\)

\(=5x\left(x+1\right)^2\)

 

5 tháng 11 2016

Bài 1:

\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)

\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)

\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)

Bài 2:

\(P=\left|2-x\right|+2y^4+5\)

Ta thấy:

\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)

\(\Rightarrow\left|2-x\right|+2y^4\ge0\)

\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)

\(\Rightarrow P\ge5\)

Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)

Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)

 

5 tháng 11 2016

Bài 4:

2(2x+x2)-x2(x+2)+(x3-4x+13)

=2x2+4x-x3-2x2+x3-4x+13

=(2x2-2x2)+(4x-4x)-(-x3+x3)+13

=13

30 tháng 8 2017

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2