Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(=\dfrac{\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]+1}{x^2+7x+11}\)
\(=\dfrac{\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1}{x^2+7x+11}\)
Đặt \(x^2+7x+11=y\), thay vào \(N\) ta được:
\(N=\dfrac{\left(y-1\right)\left(y+1\right)+1}{y}\)
\(=\dfrac{y^2-1+1}{y}\)
\(=\dfrac{y^2}{y}\)
\(=y\)
\(=x^2+7x+11\)
Vậy \(N=x^2+7x+11\).
\(\text{#}Toru\)
\(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)=\(\frac{x+2}{x+4}\)
ĐKXĐ: \(x\ne1;x\ne-\dfrac{3}{2}\)
Ta có: \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\dfrac{\left(x-1\right)^2\left(3x-1\right)}{\left(x-1\right)^2\left(2x+3\right)}=\dfrac{3x-1}{2x+3}\)
\(\dfrac{x^2-3x}{x^2-6x+9}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2}=\dfrac{x}{x-3}.\)
ĐKXĐ: \(x\ne3.\)
\(=\dfrac{\left(x-3\right)\cdot x}{\left(x-3\right)^2}=\dfrac{x}{x-3}\)
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
a:
ĐKXĐ: \(x\notin\left\{5;-5;-1;0\right\}\)
\(P=\left(\dfrac{15-x}{x^2-25}+\dfrac{2}{x+5}\right):\dfrac{x+1}{2x^2-10x}\)
\(=\left(\dfrac{15-x}{\left(x-5\right)\left(x+5\right)}+\dfrac{2}{x+5}\right)\cdot\dfrac{2x\left(x-5\right)}{x+1}\)
\(=\dfrac{15-x+2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\cdot\dfrac{2x\left(x-5\right)}{x+1}\)
\(=\dfrac{x+5}{\left(x+5\right)}\cdot\dfrac{2x}{x+1}=\dfrac{2x}{x+1}\)
b: Thay x=1 vào P, ta được:
\(P=\dfrac{2\cdot1}{1+1}=\dfrac{2}{2}=1\)
ah giúp em bài toán lớp 6 em đăng trên trang của em đc ko ạ?
tách ra <=> \(\frac{X^2-1+x-1}{X^2+2x+5x+10}\) <=> \(\frac{\left(x^2-1\right)+\left(x-1\right)}{\left(x^2+2x\right)+\left(5x+10\right)}< =>\frac{\left(x-1\right)\left(x+1\right)+\left(x-1\right)}{x\left(x+2\right)+5\left(x+2\right)}\)
Đặt nhân tử chung đi rồi tính nốt:v
\(\frac{x^2+x-2}{x^2+7x+10}=\frac{x^2+2x-x-2}{x^2+5x+2x+10}=\frac{x\left(x+2\right)-\left(x+2\right)}{x\left(x+5\right)+2\left(x+5\right)}=\frac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-1}{x+5}\)