K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

\(\dfrac{12x^2y\left(x-y\right)}{16xy^2\left(x-y\right)^2}\)

\(=\dfrac{3x}{4y\left(x-y\right)}\)

29 tháng 11 2021

1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)

25 tháng 12 2021

14.C

15.D

25 tháng 12 2021

Câu 14: C

Câu 15: D

18 tháng 2 2021

\(a,\dfrac{21x^2y^3}{24x^3y^2}=\dfrac{7y}{8x}\)

\(b,\dfrac{15xy^3\left(x^2-y^2\right)}{20x^2y\left(x+y\right)^2}=\dfrac{15xy^3\left(x-y\right)\left(x+y\right)}{20x^2y\left(x+y\right)^2}=\dfrac{3y^2\left(x-y\right)}{4x\left(x+y\right)}=\dfrac{3xy^2-3y^3}{4x^2+4xy}\)

a) Ta có: \(\dfrac{21x^2y^3}{24x^3y^2}\)

\(=\dfrac{21x^2y^3:3x^2y^2}{24x^3y^2:3x^2y^2}\)

\(=\dfrac{7y}{8x}\)

6 tháng 10 2021

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)

c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)

\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)

24 tháng 11 2018

a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)

\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)

Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)

b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)