Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1010+1010^2+1010^3+...+1010^{1011}\)
Suy ra \(1010.S=1010^2+1010^3+1010^4+....+1010^{1012}\)
Nên\(1010.S-S=1010^{1012}-1010\)hay\(1009.S=1010^{1012}-1010\)
Khi đó \(S=\frac{1010^{1012}-1010}{1009}\)
S=1011+1010^2+1010^3+...+1010^1011
S=1+1010+1010^2+1010^3+...+1010^1011
1010.S=1010+1010^2+1010^3+1010^4+...+1010^1012
1010 S - S=1010^1012-1
1009 S=1010^1012-1
S=(1010^1012-1):1009
so sánh A=\(\frac{1000+1010}{2015+2016}\) và B=\(\frac{1000}{2015}+\frac{1010}{2016}\)
ta có:\(\frac{1000+1010}{2015+2016}=\frac{1000}{2015+2016}+\frac{1010}{2015+2016}\)
mà \(\frac{1000}{2015+2016}<\frac{1000}{2015}\) và \(\frac{1010}{2015+2016}<\frac{1010}{2016}\)
=>A=1000+1010/2015+2016 <B=1000/2015+1010/2016
a: 5^30*25=5^30*5^2=5^32<5^34
b: 16^6=(2^4)^6=2^24<2^25
c: 10^30=1000^10
4^50=(4^5)^10=1024^10
=>10^30<4^50
30 + 30 + 30 + 30 + 30 + 20 + 20 + 20 + 1010 + 1010
= 30 x 5 + 20 x 3 + 1010 x 2
= 150 + 60 + 2020
= 2230
Sử dụng tính chất nếu a b < 1 thì a b < a + m b + m với mọi a, b, m ∈ Z
A = 10 10 + 1 10 11 + 1 < 10 10 + 10 10 11 + 10 = 10 9 + 1 10 10 + 1 = B
Vậy A < B
Cách khác: 10A= 10 11 + 10 10 11 + 1 = 1 + 9 10 11 + 1
10 B = 10 10 + 10 10 10 + 1 = 1 + 9 10 11 + 1 mà 9 10 11 + 1 < 9 10 10 + 1 => A < B
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!
Giải:
Ta có: A=1011-1/1012-1
10A=10.(1011-1)/1012-1
10A=1012-10/1012-1
10A=1012-1-9/1012-1
10A=1012-1/1012-1 - 9/1012-1
10A=1-9/1012-1
Tương tự: B=1010+1/1011+1
10B=1+9/1011+1
Vì -9/1012-1 < 9/1011+1 nên 10A < 10B
Vậy A<B
Chúc bạn học tốt!
\(A=\frac{10^{29}+10^{10}}{10^{30}+10^{10}}=\frac{10^{10}.\left(10^{19}+1\right)}{10^{10}.\left(10^{20}+1\right)}=\)\(\frac{10^{19}+1}{10^{20}+1}\)
\(\Leftrightarrow10A=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{30}+10^{10}}{10^{31}+10^{10}}=\frac{10^{10}.\left(10^{20}+1\right)}{10^{10}.\left(10^{21}+1\right)}=\frac{10^{20}+1}{10^{21}+1}\)
\(\Leftrightarrow10B=1+\frac{9}{10^{21}+1}\)
Vì \(1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\Rightarrow10A>10B\Leftrightarrow A>B\)