K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

\(\sqrt{2\cdot36}+\sqrt{2\cdot\dfrac{9}{4}}-\sqrt{2\cdot16}-\sqrt{2\cdot81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)

22 tháng 12 2021

\(-\dfrac{6\sqrt{2}-\sqrt{\left(9-8\sqrt{2}\right)\cdot2}}{2}\)

22 tháng 12 2021

\(\sqrt{2.36}+\sqrt{2.\dfrac{9}{4}}-\sqrt{2.16}-\sqrt{2.81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)

4 tháng 8 2023

\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)

\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)

\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)

6: Ta có: \(\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)\)

=18-3

=15

7: Ta có: \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)

\(=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}\)

\(=-\dfrac{11}{2}\sqrt{2}\)

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

22 tháng 11 2021

\(a.4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\)

22 tháng 11 2021

\(a,=4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\\ b,=\dfrac{3\left(\sqrt{2}+1\right)}{1}+\left|3-\sqrt{2}\right|-2\sqrt{2}\\ =3\sqrt{2}+3+3-\sqrt{2}-2\sqrt{2}=6\)

\(\sqrt{\dfrac{2a^2b^4}{50}}=\sqrt{\dfrac{a^2b^4}{25}}=\dfrac{b^2\left|a\right|}{5}\)

\(\dfrac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\dfrac{ab^2}{81}}=\dfrac{\sqrt{a}\left|b\right|}{9}\)

17 tháng 7 2023

1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=2+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}-1\)

2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)

\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)

\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)

\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

14 tháng 10 2020

a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)

\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)

\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)

b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)

\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)

c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)

\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)

2 tháng 10 2018

\sqrt{72}\+ \sqrt{4+1/2}\ - \sqrt{32}\ -\sqrt{162}\