Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 2)(x2 - 2x + 4)(x - 2)( x2 + 2x + 4)
= (x - 2)2(x - 2)2(x + 2)2
= (x - 2)4(x + 2)2
b) (a + b + c)3 - (b + c - a)3 - (a - b + c)3 - (a + b - c)3
Đặt a+b-c=x, c+a-b=y, b+c-a=z
=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c
Ta có hằng đẳng thức:
(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)
=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3
=3(x+y)(x+z)(y+z)
=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)
=3.2a.2b.2c
=24abc
c) (a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a)
Đặt x = a+b; y = b+c; z = c+a ta có:
x3+y3+z3−3xyz
= (x+y)3−3xy(x−y)+z3−3xyz
=[(x+y)3+z3]−3xy(x+y+z)
=(x+y+z)3−3z(x+y)(x+y+z)−3xy(x−y−z)
=(x+y+z)[(x+y+z)2−3z(x+y)−3xy]
=(x+y+z)(x2+y2+z2+2xy+2xz+2yz−3xz−3yz−3xy)
=(x+y+z)(x2+y2+z2−xy−yz−yx)
Thay vào ta có:
(a+b+b+c+c+a)[(a+b)2+(b+c)2+(c+a)2−(a+b)(b+c)−(b+c)(c+a)−(c+a)(a+b)]
=(2a+2b+2c)(a2−ab−ac+b2−bc+c2)
=2(a+b+c)(a2−ab−ac+b2−bc+c2)
a) (2x+3)2-2(2x+3)(2x+5)+(2x+5)2
=4x2+12x+9-(4x+6)(2x+5)+4x2+20x+25
=4x2+12x+9-(8x2+12x+20x+30)+4x2+20x+25
=4x2+12x+9-8x2-12x-20x-30+4x2+20x+25
=4
b) (x2+x+1)(x2-x+1)(x2-1)
=((x2+1)2-x2)(x2-1)
=(x4+x2+1)(x2-1)
=x6+x4+x2-x4-x2-1
=x6-1
c)(a+b-c)2+(a-b+c)2-2(b-c)2
=a2+b2+c2+2ab-2ac-2bc+a2+b2+c2-2ab+2ac-2bc-2(b2-2bc+c2)
=2a2+2b2+2c2-4bc-2b2+4bc-2c2
=2a2
d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2
= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2+2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab
=4a2+4b2+4c2+4ab+4bc
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a)\(\left(x-2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x-4\right)\)
\(=\left(x-2\right)^2\left(x^2-2x+4\right)\left(x^2+2x-4\right)\)
\(=\left(x-2\right)^2\left(x^4+4x^2+16\right)\)
\(=x^6-4x^5+8x^4-16x^3+32x^2-64x+64\)