K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

a)\(\left(x-2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x-4\right)\)

\(=\left(x-2\right)^2\left(x^2-2x+4\right)\left(x^2+2x-4\right)\)

\(=\left(x-2\right)^2\left(x^4+4x^2+16\right)\)

\(=x^6-4x^5+8x^4-16x^3+32x^2-64x+64\)

a) (x - 2)(x2 - 2x + 4)(x - 2)( x2 + 2x + 4)

= (x - 2)2(x - 2)2(x + 2)2

= (x - 2)4(x + 2)2

b) (a + b + c)3 - (b + c - a)3 - (a - b + c)3 - (a + b - c)3

Đặt a+b-c=x, c+a-b=y, b+c-a=z

=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c

Ta có hằng đẳng thức:

(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)

=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3

=3(x+y)(x+z)(y+z)

=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)

=3.2a.2b.2c

=24abc


c) (a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a)

Đặt x = a+b; y = b+c; z = c+a ta có:

x3+y3+z3−3xyz

= (x+y)3−3xy(x−y)+z3−3xyz

=[(x+y)3+z3]−3xy(x+y+z)

=(x+y+z)3−3z(x+y)(x+y+z)−3xy(x−y−z)

=(x+y+z)[(x+y+z)2−3z(x+y)−3xy]

=(x+y+z)(x2+y2+z2+2xy+2xz+2yz−3xz−3yz−3xy)

=(x+y+z)(x2+y2+z2−xy−yz−yx)

Thay vào ta có:

(a+b+b+c+c+a)[(a+b)2+(b+c)2+(c+a)2−(a+b)(b+c)−(b+c)(c+a)−(c+a)(a+b)]

=(2a+2b+2c)(a2−ab−ac+b2−bc+c2)

=2(a+b+c)(a2−ab−ac+b2−bc+c2)

19 tháng 7 2021

a) (2x+3)2-2(2x+3)(2x+5)+(2x+5)2

=4x2+12x+9-(4x+6)(2x+5)+4x2+20x+25

=4x2+12x+9-(8x2+12x+20x+30)+4x2+20x+25

=4x2+12x+9-8x2-12x-20x-30+4x2+20x+25

=4

b) (x2+x+1)(x2-x+1)(x2-1)

=((x2+1)2-x2)(x2-1)

=(x4+x2+1)(x2-1)

=x6+x4+x2-x4-x2-1

=x6-1

c)(a+b-c)2+(a-b+c)2-2(b-c)2

=a2+b2+c2+2ab-2ac-2bc+a2+b2+c2-2ab+2ac-2bc-2(b2-2bc+c2)

=2a2+2b2+2c2-4bc-2b2+4bc-2c2

=2a2

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2+2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2+4ab+4bc

 

 

19 tháng 7 2021

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2-2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2

 

 

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

13 tháng 12 2021

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

23 tháng 8 2015

mk chỉ đưa ra kết quả thui nghen chứ lm thì dài lm, bn coi kết quả r đối chiếu bài lm của bn ấy

a/ = x3 - 16x2 + 25x

b/ = -2ab + a2 + 2a

c/ = 2a2