Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)
Ta có: \(\sqrt{2+\sqrt{3}}=\frac{1}{\sqrt{2}}.\sqrt{4+2\sqrt{3}}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}\)
=> \(A=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}}=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}}=\frac{\sqrt{3}+1}{2}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)
\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))
\(=0\)
b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)
\(=\frac{6-3+\sqrt{3}}{3}\)
\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)
\(=5-\sqrt{3}\)
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)
\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)
\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............
=\(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}:\left(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}:\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\left(\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\frac{\sqrt{3}.\left(\sqrt{3}+1\right)-2.2+\sqrt{3}+1}{2\sqrt{6}}\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}.}.\frac{2\sqrt{6}}{2\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)