Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ne\left\{2;3\right\}\)
Ta có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-3.\frac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=-\frac{1}{\sqrt{x}-3}\)
Điều kiện : \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{1}{1+\sqrt{x}}\right):\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{1+\sqrt{x}}\)
A=(x+x+yy−xy):(xy+yx+xy−xy−xyx+y)
=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}=x+yx+xy+y−xy:xy(xy+y)(xy−x)x(xy−x)xy+y(xy+y)xy−(x+y)(xy+y)(xy−x)
=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}=x+yx+y:xy2−x2yx2y−x2xy+xy2+y2xy−y2xy+x2xy
=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}=x+yx+y.xy2+x2yxy2−x2y
=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}=x+yx+y.xy(x+y)xy(y−x)(x+y)
=\sqrt{y}-\sqrt{x}=y−x
\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2\sqrt{x}-9-\left(x-9\right)+2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x-3}}\)
Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )
\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)
Dòng 3 thêm cho mik dấu tương đương ở đầu dòng hộ :> Xin lỗi vì sơ suất
\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{x-2\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne4\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2x-5\sqrt{x}+2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)