K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); ...; \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=> S < \(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}< 5.1=5\)=> S<5

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)\(\frac{1}{100^2}>\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

=> \(S>5\left(\frac{1}{2}-\frac{1}{101}\right)=5.\frac{101-2}{2.101}=\frac{5.99}{2.101}~2,45\)=> S>2

Vậy 2 < S < 5 => Đpcm

29 tháng 4 2021

Thách ai giải được hihihi

6 tháng 12 2023

  S= 5+52+53+...+52020+52021

 5S=52+53+54+...+52021+52022

 5S - S=4S=52022-5

  Ta có: 4S+5=52022

             =4S -5 +5 =52022

              => 4S=52022

23 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

2) 162008 - 82000

= (...6) - (84)500

= (...6) - (...6)500

= (...6) - (...6)

= (...0) chia hết cho 10

3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2

=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2

=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2

=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2

=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2

=> 1100 + 800 + 1125 = (x + 1)2 

=> 3025 = (x + 1)2, vô lí

24 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

23 tháng 10 2021

\(S=5+5^2+5^3+...+5^{1992}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1991}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{1991}.6=6\left(5+5^3+...+5^{1991}\right)⋮6\)

30 tháng 12 2017

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

30 tháng 12 2017

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha

20 tháng 9 2018

ai trả lời giúp mình

20 tháng 9 2018

1^3+2^3+4^3+5^3=(1+2+3+4+5)^2

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6