K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

S=333300

14 tháng 2 2017

333300

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

7 tháng 5 2016

 S=1.2+ 2.3+4,5.......+99.100 
Nhân cả 2 vế với 3, ta được: 
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
----> S = (99.100.101):3 
 S= 333300 
Vậy A=333300 

7 tháng 5 2016

S = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100

S = 1.100

S = 100

8 tháng 3 2017

ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)

\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)

\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)

\(3S=99.100.101\)

\(S=\frac{99\cdot100\cdot101}{3}\)

S=...

8 tháng 3 2017

3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100

3S=99.100.101

S=33.100.101

S=333300

Vậy S=333300

19 tháng 12 2014

Dễ mà , cô giáo minh vừa dạy xong:

Nhận xét:Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Ta nhân 2 vế của S với 3 lần khoảng cách này ,ta được:

 3S=3.(1.2+2.3+3.4+4.5+...+99.100)

3S=1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3

3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+....+99.100.(101-98)

3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+99.100.101-98.99.100

3S=99.100.101

S=99.100.101 /3

1 tháng 1 2017

S=99.100.101/3 nha bạn

Chúc các bạn học giỏi 

Tết vui vẻ nha

15 tháng 2 2017

S = 1.2 + 2.3 + ... + 99.100

4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)

4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100

4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)

4S = 99.100.101 - 0.1.2

4S = 99.100.101

S = 99.25.101

S = 249975

15 tháng 2 2017

\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)

\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)

\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)

\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)

\(3S=99.100.101=9999000\)

\(S=9999000:3=3333000\)

\(\Rightarrow S=3333000\)

20 tháng 12 2015

S=1.2+2.3+3.4+...+99.100

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3S=99.100.101

S=(99.100.101):3=333300

25 tháng 3 2017

3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100

3S=98.99.100

S=\(\dfrac{98.99.100}{3}\)

S=98.33.100

S=323400

13 tháng 11 2017

Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)