Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 2+22+23+....+259+260
B = (2+22+23+24) +....+ (257+258+559+560)
B = 2(1+2+22+23)+...+ 257(1+2+22+23)
B = 2x15 +....+ 257x15
B = 15( 2+....+257) =>chia hết cho 5 vì 15 chia hết cho 5
a) B=2+22 + 23 + ...+ 259 + 260
B= (2+22) + (23+24) + .... + ( 259+ 260)
B= 2(1+2) + 23(1+2) + ... +259(1+2)
B= 2x3 + 23x3 + ... + 259x3
B= 3(2+23+......+259) => chia hết cho 3
phần a:
nhóm S thành 50 nhóm mỗi nhóm 2 số ta có:
\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=3\left(2+2^3+...+2^{99}\right)\)
Nhóm biểu thức trong ngoặc thành 25 nhóm mỗi nhóm 2 số ta có:
\(\Rightarrow S=3\left[2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\right]\)
\(\Rightarrow S=15\left(2+2^5+...+12^{97}\right)⋮15\)
phẫn c :
ta có : S=2^1+2^2+...+2^100
2S=4+2^1+2^2+...+2^99
2S-S=(4+2^1+2^2+...+2^99)-(2^1+2^2+...+2^100)
S= 4-2^100
phẫn b :
ta có : 2100=23x333+1
=(23)333+21
=(...8)333+2
=(...8)+2=(...0)
S=4-(...0)
=>S=(...4)
\(S=\left(5+5^2+5^3+5^4\right)+...+\left(5^{93}+5^{94}+5^{95}+5^{96}\right).\)
\(S=5\left(1+5+5^2+5^3\right)+...+5^{93}\left(1+5+5^2+5^3\right)\)
\(S=156\left(5+5^5+5^9+...+5^{89}+5^{93}\right)\) chia hết cho 156