K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

B= ( 2 + 2^2 + 2^3 + 2^4 + 2^5) + 2^5. ( 2 + 2^2 + 2^3 + 2^4 + 2^5)+....+ 2^95 ( 2 + 2^2 + 2^3 + 2^4 + 2^5)

  = 62.(1 + 2^5 + ... + 2^95 ) chia hết cho 62

Suy ra B chia hết cho 31

17 tháng 3 2019

 CAM ON NHE DUONG

26 tháng 10 2017

B = 2+22+23+....+259+260

B = (2+22+23+24) +....+ (257+258+559+560)

B = 2(1+2+22+23)+...+ 257(1+2+22+23)

B = 2x15 +....+ 257x15

B = 15( 2+....+257) =>chia hết cho 5 vì 15 chia hết cho 5

26 tháng 10 2017

a) B=2+22 + 23 + ...+ 259 + 260

B= (2+22) + (23+24) + .... + ( 259+ 260)

B= 2(1+2) + 23(1+2) + ... +259(1+2)

B= 2x3 + 23x3 + ... + 259x3

B= 3(2+23+......+259) => chia hết cho 3

10 tháng 5 2017

phần a:

nhóm S thành 50 nhóm mỗi nhóm 2 số ta có:

\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=3\left(2+2^3+...+2^{99}\right)\)

Nhóm biểu thức trong ngoặc thành 25 nhóm mỗi nhóm 2 số ta có:

\(\Rightarrow S=3\left[2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\right]\)

\(\Rightarrow S=15\left(2+2^5+...+12^{97}\right)⋮15\)

10 tháng 5 2017

phẫn c : 

ta có : S=2^1+2^2+...+2^100

2S=4+2^1+2^2+...+2^99

2S-S=(4+2^1+2^2+...+2^99)-(2^1+2^2+...+2^100)

S= 4-2^100

phẫn b : 

ta có : 2100=23x333+1

          =(23)333+21

         =(...8)333+2

         =(...8)+2=(...0)

S=4-(...0)

=>S=(...4)

13 tháng 10 2016

\(S=\left(5+5^2+5^3+5^4\right)+...+\left(5^{93}+5^{94}+5^{95}+5^{96}\right).\)

\(S=5\left(1+5+5^2+5^3\right)+...+5^{93}\left(1+5+5^2+5^3\right)\)

\(S=156\left(5+5^5+5^9+...+5^{89}+5^{93}\right)\) chia hết cho 156

13 tháng 10 2016

có số 1 mới làm dc