Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(5+5^2+5^3+5^4\right)+...+\left(5^{93}+5^{94}+5^{95}+5^{96}\right).\)
\(S=5\left(1+5+5^2+5^3\right)+...+5^{93}\left(1+5+5^2+5^3\right)\)
\(S=156\left(5+5^5+5^9+...+5^{89}+5^{93}\right)\) chia hết cho 156
A) S=5(1+5)+53(1+5)+....+52003(1+5)=52003.6 chia hết cho 6. Vậy S chia hết cho 6
S=5(1+5+52)+54(1+5+52)+......+52002(1+5+52)=(1+5+52)(5+54+57+...+52002)=
31(5+54+57+...+52002) chia hết cho 31. Vậy S chia hết cho 31
S=5(1+5+52+53)+55(1+5+52+53)+......+52001(1+5+52+53)=(1+5+52+53)(5+55+...+52001)= 156(5+55+...+52001) chia hết cho 156. Vậy S chia hết cho 156
B) S=2(1+2+22+23+24)+26(1+2+22+23+24) +..........+296(1+2+22+23+24)
= 31(2+26+....+296) chia hết cho 31. Vậy S chia hết cho 31
C) S= 165+215= 24.5+25=220+215=215.25+25=215(25+1)= 215.33 chia hết cho 33
Vậy S chia hết cho 33
1, a,b ko chia hết cho 3 nhưng có cùng số dư khi chia cho 3
=> a,b cùng chia 3 dư 1 hoặc 2
sau đó xét 2 TH;
=> ab chia 3 dư 1 => ab-1 là bội của 3 (ĐPCM)