K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

\(-12;-9;-8;\frac{-7}{2};\frac{-21}{16};\frac{-11}{9};-\frac{1}{2}\)

2 tháng 10 2016

5 mũ 37 ..... 11 mũ 24

so sánh

a: \(A=\dfrac{-3}{8}\left(16+\dfrac{8}{17}+7+\dfrac{9}{17}\right)=\dfrac{-3}{8}\cdot24=-9\)

b: \(B=\dfrac{\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{3}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}=\dfrac{3}{7}\)

 

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

24 tháng 6 2016

a/ \(\frac{15}{x}-\frac{1}{3}=\frac{28}{51}\)

\(\frac{15}{x}=\frac{28}{51}+\frac{1}{3}\)

\(\frac{15}{x}=\frac{15}{17}\)

\(x=15:\frac{15}{17}\)

\(x=17\)

b) \(\frac{x}{20}-\frac{2}{5}=10\)

\(\frac{x}{20}=10+\frac{2}{5}\)

\(\frac{x}{20}=\frac{52}{5}\)

\(x=\frac{52}{5}\cdot20\)

\(x=208\)

c) \(x+\frac{18}{23}=2\frac{1}{3}\)

\(x+\frac{18}{23}=\frac{7}{3}\)

\(x=\frac{7}{3}-\frac{18}{23}\)

\(x=\frac{107}{69}\)

d) \(\frac{7}{11}< x-\frac{1}{7}< \frac{10}{13}\)

\(\Rightarrow\frac{7}{11}+\frac{1}{7}< x< \frac{10}{13}\)

\(\frac{60}{77}< x< \frac{60}{78}\)

Đến đây .....bí!

e) Tớ bỏ luôn đc ko.

 

24 tháng 6 2016

D) 7/11<X-1/7<10/13

    <=> 7/11+1/7<x< 10/13+1/7

 <=> 60/77< x< 83/91

<=> 5460/1001 <x< 6391/1001

vậy X thuộc tập hợp các phÂN số lớn hơn 5460/1001 và bé hơn 913/1001

vd :  Y/1001 trong đó y là 5461;5462;5463...6389;6390

NV
23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)

Từ pt thứ nhất của hệ:

\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)

\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)

\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thay xuống pt dưới:

\(\sqrt{x-16}+\sqrt{x-9}=7\)

\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)

\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)

\(\Leftrightarrow...\)

Bài 1. A=\(\frac{1}{1}\)x\(\frac{1}{2}\)x\(\frac{1}{2}\)x\(\frac{1}{3}\)x\(\frac{1}{3}\)x\(\frac{1}{4}\)x\(\frac{1}{4}\)x\(\frac{1}{5}\)x\(\frac{1}{5}\)x\(\frac{1}{6}\) Bài 2. B=\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+\(\frac{1}{4x5}\)+\(\frac{1}{5x6}\) Bài 3. B=\(\frac{2}{1x2}\)+\(\frac{2}{2x3}\)+\(\frac{2}{3x4}\)+\(\frac{2}{4x5}\)+\(\frac{2}{5x6}\) Bài 4. C=\(\frac{2}{1x3}\)+\(\frac{2}{3x5}\)+\(\frac{2}{5x7}\)+\(\frac{2}{7x9}\)+\(\frac{2}{9x11}\) Bài...
Đọc tiếp

Bài 1.

A=\(\frac{1}{1}\)x\(\frac{1}{2}\)x\(\frac{1}{2}\)x\(\frac{1}{3}\)x\(\frac{1}{3}\)x\(\frac{1}{4}\)x\(\frac{1}{4}\)x\(\frac{1}{5}\)x\(\frac{1}{5}\)x\(\frac{1}{6}\)

Bài 2.

B=\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+\(\frac{1}{4x5}\)+\(\frac{1}{5x6}\)

Bài 3.

B=\(\frac{2}{1x2}\)+\(\frac{2}{2x3}\)+\(\frac{2}{3x4}\)+\(\frac{2}{4x5}\)+\(\frac{2}{5x6}\)

Bài 4.

C=\(\frac{2}{1x3}\)+\(\frac{2}{3x5}\)+\(\frac{2}{5x7}\)+\(\frac{2}{7x9}\)+\(\frac{2}{9x11}\)

Bài 5.

C=\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)

Bài 6.Tính bằng cách thuận tiện nhất.

a.(792,81 x 025 + 792,81 x 0,75) x (11 x 9 - 900 x 0,1 - 9).

b.\(\frac{7,2:2x57,2+2,86x2x64}{4+4+8+12+20+....+220}\)

c.\(\frac{2003x14+1998+2001x2002}{2002+2002x503+504x2002}\)

d.\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}\)

đ.3,54 x 73 + 0,23 x 25 + 3,54 x 27 + 0,17 x 25

e.\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)

g.\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)\)

0
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{8^2} + {6^2}}  = 10\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)

Độ dài trục thực 16

Độ dài trục ảo 12

c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {1^2}}  = \sqrt {17} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 2

d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6