Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{-3}{8}\left(16+\dfrac{8}{17}+7+\dfrac{9}{17}\right)=\dfrac{-3}{8}\cdot24=-9\)
b: \(B=\dfrac{\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{3}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}=\dfrac{3}{7}\)
a/ \(\frac{15}{x}-\frac{1}{3}=\frac{28}{51}\)
\(\frac{15}{x}=\frac{28}{51}+\frac{1}{3}\)
\(\frac{15}{x}=\frac{15}{17}\)
\(x=15:\frac{15}{17}\)
\(x=17\)
b) \(\frac{x}{20}-\frac{2}{5}=10\)
\(\frac{x}{20}=10+\frac{2}{5}\)
\(\frac{x}{20}=\frac{52}{5}\)
\(x=\frac{52}{5}\cdot20\)
\(x=208\)
c) \(x+\frac{18}{23}=2\frac{1}{3}\)
\(x+\frac{18}{23}=\frac{7}{3}\)
\(x=\frac{7}{3}-\frac{18}{23}\)
\(x=\frac{107}{69}\)
d) \(\frac{7}{11}< x-\frac{1}{7}< \frac{10}{13}\)
\(\Rightarrow\frac{7}{11}+\frac{1}{7}< x< \frac{10}{13}\)
\(\frac{60}{77}< x< \frac{60}{78}\)
Đến đây .....bí!
e) Tớ bỏ luôn đc ko.
D) 7/11<X-1/7<10/13
<=> 7/11+1/7<x< 10/13+1/7
<=> 60/77< x< 83/91
<=> 5460/1001 <x< 6391/1001
vậy X thuộc tập hợp các phÂN số lớn hơn 5460/1001 và bé hơn 913/1001
vd : Y/1001 trong đó y là 5461;5462;5463...6389;6390
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)
Từ pt thứ nhất của hệ:
\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)
\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)
\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)
\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
Thay xuống pt dưới:
\(\sqrt{x-16}+\sqrt{x-9}=7\)
\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)
\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)
\(\Leftrightarrow...\)
a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6
b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {6^2}} = 10\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)
Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)
Độ dài trục thực 16
Độ dài trục ảo 12
c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {1^2}} = \sqrt {17} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 2
d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6
\(-12;-9;-8;\frac{-7}{2};\frac{-21}{16};\frac{-11}{9};-\frac{1}{2}\)
5 mũ 37 ..... 11 mũ 24
so sánh