Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là hợp số
a=(8^3)^100-1=8^300-1=(8^150)^2-1^2=(8^150-1)(8^150+1)
do đó ta có thể nhận thấy a có ít nhất là 4 ước nên a là hợp số
Ta có:
a = (83)1000 - 1 = 5121000 - 1 = (5124)250 - 1 = ....6250 - 1 = ....6 - 1 = ....5
=> a chia hết cho 5
Mà a >5 => a là hợp số
Vậy...
-)\(A=1+2^{3^{2012}}\) có là hợp số vì:
\(A=1+2^{3^{2012}}\\ \Leftrightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv0\left(mod3\right)\)
=> A là hợp số
chắc là hợp số, vì 8*8*8*8*8*8......*8 sẽ chia hết cho 1,2,4,8,16,24,32 .....
8^3^100 —1= (2^3)^3^100 —1 = (2^3^100)^3 —1= (2^3^100 —1).{(2^3^100)^2 +2^3^100+1}
ta có: \(A=8^{3^{100}}-1=\left(8^{150}\right)^2-1^2=\left(8^{150}-1\right)\left(8^{150}+1\right)\)
vậy A là hợp số.
Nhanh nhỉ!