K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

NV
9 tháng 1 2022

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn

 

3 tháng 12 2021

24 cách

3 tháng 12 2021

Số cách sắp xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế là số hoán vị của 4 phần tử \(P4=4!=24\left(cách\right)\)

11 tháng 11 2018

Đáp án là A

Xếp bạn Chi ngồi giữa có 1 cách.

Số cách xếp 4 bạn sinh An, Bình, Dũng, Lệ vào 4 chỗ còn lại là

một hoán vị của 4 phần tử nên có có 4! = 24 cách.

Vậy có 1.24 =  24 cách xếp.

31 tháng 7 2018

31 tháng 8 2017

Chọn A

Lời giải. Xếp bạn Chi ngồi giữa có 1 cách.

Số cách xếp 4 bạn sinh An, Bình, Dũng, Lệ vào 4 chỗ còn lại là một hoán vị của 4 phần tử nên có có 4! cách.

Vậy có 24 cách xếp

12 tháng 2 2017

28 tháng 6 2018

22 tháng 6 2019

Chọn A

Giả sử khi xếp 10 người vào một bàn tròn, hai cách sắp xếp được xem là như nhau nếu cách này nhận được từ cách kia bằng cách xoay bàn đi một góc nào đó.

Bài toán trên được chia thành các công đoạn sau:

Công đoạn 1: Chọn 10 người trong 20 người đã cho để xếp vào bàn tròn A: có  C 20 10  cách.

Công đoạn 2: Sắp xếp 10 người vừa chọn được ở công đoạn 1 vào bàn tròn A: có 9! cách.

Công đoạn 3: Sắp xếp 10 người còn lại vào bàn tròn B: có 9! cách.

Vậy số cách sắp xếp là:  C 20 10 .9!.9! cách.