Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>(x-y)(x+y)=2014
Mà x,y thuộc z
Nên ta có bảng sau:
x+y | 1 | -1 | 2014 | -2014 | 2 | -2 | 1007 | -1007 |
x-y | 2014 | -2014 | 1 | -1 | 1007 | -1007 | 2 | -2 |
x | loại | loại | loại | loại | loại | loại | loại | loại |
y |
\(\Leftrightarrow x^2-xy-5x+4y+9=0\)
\(\Leftrightarrow\left(x^2-xy\right)-\left(4x-4y\right)-x+9=0\)
\(\Leftrightarrow x\left(x-y\right)-4\left(x-y\right)-x+9=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4\right)-\left(x-4\right)+5=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-y-1\right)=-5\)
Do \(x;y\in Z\Rightarrow\left(x-4\right);\left(x-y-1\right)\in Z\)
Ta có các trường hợp sau
+ TH1:
\(\left\{{}\begin{matrix}x-4=1\\x-y-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=9\end{matrix}\right.\)
+ TH2:
\(\left\{{}\begin{matrix}x-4=-1\\x-y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
+ TH3:
\(\left\{{}\begin{matrix}x-4=5\\x-y-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)
+ TH4:
\(\left\{{}\begin{matrix}x-4=-5\\x-y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
\(8\left(x-2015\right)^2+y^2=25\)
=> 8(x-2015)2 nhỏ hơn hoặc bằng 25 ( vì y2 nhỏ hơn hoặc bằng 0)
=> (x-2015)2---------------------------- 25/8
=> x-2015 ={-1;0;1} (hơi tắt xíu mong bạn hiểu)
Ta có bảng:
x-2015 | -1 | 0 | 1 |
x | 2014 | 2015 | 2016 |
y | \(\sqrt{\frac{25}{8}}\)(loại) | 5;-5(thỏa mãn) | \(\sqrt{\frac{25}{8}}\)(loại) |
KL: Vậy có 2 cặp x,y thỏa mãn
vì ( x - 2014 )2014 \(\ge\)0 \(\forall\)x
( y - 2015 )2014 \(\ge\)0 \(\forall\)y
\(\Rightarrow\)( x - 2014 )2014 + ( y - 2015 )2014 \(\ge\)0 \(\forall\)x,y
Mà ( x - 2014 )2014 + ( y - 2015 )2014 = 0
\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2014}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}\)
Vậy ( x ; y ) = ( 2014 ; 2015 )
Vì (x-2014)2014 \(\ge\) 0
(y-2015)2014 \(\ge\)0
=> (x-2014)2014 + (y-2015)2014 \(\ge\) 0
Mà (x-2014)2014 + (y-2015)2014 = 0
=> \(\hept{\begin{cases}\left(x-2014\right)^{2014}=0\\\left(y-2015\right)^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2014=0\\y-2015=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)
(2x - 3)2 + |y| = 1
\(\Rightarrow\left(2x-3\right)\le1\)
Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)
nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)
Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)
khong co cap so nao