Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
Ta có :
20173 + 20172 = 20172 . 2017 + 20172 . 1 = 20172 . ( 2017 + 1 ) = 20172 . 2018 < 20182 . 2018 = 20183
Vậy 20173 + 20172 < 20183
Ta có :
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1< 2^{2018}=B\)
Vậy A<B
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Sai đề câu E sửa lại 95 hoặc 93 vì đây là dãy số mũ lẻ. Ta có :
\(E=3+3^3+3^5+3^7+...+3^{95}\)
\(\Rightarrow\) \(9E=3^3+3^5+3^7+3^9+...+3^{95}+3^{97}\)
\(\Rightarrow\) \(8E=3^{97}-3\)
\(\Rightarrow\) \(E=\frac{3^{97}-3}{8}\)
\(E=3+3^3+3^5+3^7+.......+3^{95}\)
\(\Rightarrow9E=3^3+3^5+3^7+3^9+...+3^{97}\)
\(\Rightarrow9E-E=\left(3^3+3^5+3^7+3^9+....+3^{97}\right)-\left(3+3^3+3^5+3^7+.....+3^{95}\right)\)
\(\Rightarrow8E=3^{97}-3\)
\(\Rightarrow E=\frac{3^{97}-3}{8}\)
\(F=1+2018+2018^2+......+2018^{2017}\)
\(=2018^0+2018^1+2018^2+....+2018^{2017}\)
\(\Rightarrow2018F=2018^1+2018^2+2018^3+....+2018^{2018}\)
\(\Rightarrow2018F-F=\left(2018^1+2018^2+2018^3+....+2018^{2018}\right)-\left(2018^0+2018^1+2018^2+....+2018^{2017}\right)\)
\(\Rightarrow2017F=2018^{2018}-1\)
\(\Rightarrow F=\frac{2018^{2018}-1}{2017}\)
Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)
Lấy (2) trừ (1) ta có :
\(\Rightarrow A=2^{2018}-1\)
\(\Rightarrow A< B\). Vì \(B=2^{2018}\)
A = 1+2+22+23+.....+22017
2A = 2(1+2+22+23+.....+22017) = 2+22+23+24+.....+22018
2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)
=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017
A =22018-1 < 22018
Vậy A < B