K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

n/n+3=n:(n+3)=n:n+n:3=1+n:3

n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2

Vì ta thấy rõ 3(1+n):2 > 1+n :3 

Hay n/n+3 < n+1/n+2

18 tháng 9 2017

Ta xét 2 phân số sau thì có :

\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)

\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)

Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)

Quy đồng lên ta có :

\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)

\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)

Mà 3n+6>n+3

\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)

\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)

\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

24 tháng 6 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

29 tháng 7 2015

\(\text{Ta có}:1-\frac{n}{n+1}=\frac{1}{n+1}\) 

\(\text{Ta có}:1-\frac{n+1}{n+2}=\frac{1}{n+2}\)

\(\text{Mà }\frac{1}{n+1}>\frac{1}{n+2}\)

\(\text{Nên }\frac{n}{n+1}>n+\frac{n+1}{n+2}\)

29 tháng 7 2015

Ta có:

\(\frac{n}{n+1}

13 tháng 12 2015

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)

....

\(\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}<1\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\)

25 tháng 8 2020

Đặt A = \(\frac{n+1}{n+2}\)

=> \(\frac{1}{A}=\frac{n+2}{n+1}\)

=> \(\frac{1}{A}-1=\frac{n+2-n-1}{n+1}=\frac{1}{n+1}\)

Đặt B = \(\frac{n+3}{n+4}\)

=> \(\frac{1}{B}=\frac{n+4}{n+3}\)

=> \(\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

25 tháng 8 2020

Đặt \(A=\frac{n+1}{n+2}\)

\(\Rightarrow\frac{1}{A}=\frac{n+2}{n+1}\)

\(\Rightarrow\frac{1}{A}-1=\frac{n+2-n+1}{n+1}=\frac{1}{n+1}\)

Đặt \(B=\frac{n+3}{n+4}\)

\(\Rightarrow\frac{1}{B}=\frac{n+4}{n+3}\)

\(\Rightarrow\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

10 tháng 9 2016

\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)

Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)

3 tháng 6 2015

xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )

suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q

ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

xét n chia 3 dư  suy ra n=3p+2 (p là thương)

suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p

mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1

3 tháng 6 2015

có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha