Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{7}-2\right)^2=11-4\sqrt{7}\)
\(\left(3-\sqrt{7}\right)^2=16-6\sqrt{7}=11-4\sqrt{7}+5-2\sqrt{7}\)
mà \(5-2\sqrt{7}< 0\)
nên \(\sqrt{7}-2< 3-\sqrt{7}\)
Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
Đặt a=1000^2012 thì \(A=\frac{a+2}{a-1}\) ; \(B=\frac{a}{a-3}\)
Xét \(A-B=\frac{a+2}{a-1}-\frac{a}{a-3}=\frac{\left(a+2\right)\left(a-3\right)-a\left(a-1\right)}{\left(a-1\right)\left(a-3\right)}\)
\(=\frac{a^2-a-6-a^2+a}{\left(a-1\right)\left(a-3\right)}=\frac{-6}{\left(a-1\right)\left(a-3\right)}\)
Do \(a>1;a>3\) nên \(\left(a-1\right)\left(a-3\right)>0\Leftrightarrow A-B< 0\)
Do đó \(A>B\)
\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)
1) \(\sqrt[3]{x+1}=5\)
\(\Rightarrow x+1=125\)
\(\Rightarrow x=124\)
2) \(\sqrt[3]{1-3x^3}=-2\)
\(\Rightarrow1-3x^3=-8\)
\(\Rightarrow3x^3=9\)
\(\Rightarrow x=\sqrt[3]{3}\)
a) \(2\sqrt{2}+6=\sqrt{8}+6< \sqrt{9}+6=3+6=9\)
Vậy \(2\sqrt{2}+6< 9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2\sqrt{6}+3=2+\sqrt{24}+3>5+4=9=3^2\)
Vậy \(\sqrt{3}+\sqrt{2}>3\)
Ta có : m=0 thay vào (d) được :
y = f(x) = (2*0-1)x+1 = -x+1
Vì hệ số a = -1<0 nên hàm nghịch biến
Mà √3 -√2 > √6 - √5 =>f(√3 -√2) < f(√6 - √5)
Ta có: \(2\sqrt{2}=\sqrt{8}>\sqrt{7}\).