Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1
\(A=\frac{37^{20}}{37^{20}-6}=\frac{37^{20}-6+6}{37^{20}-6}=1+\frac{6}{37^{20}-6}\)
\(B=\frac{37^{20}+4}{37^{20}-2}=\frac{37^{20}-2+6}{37^{20}-2}=1+\frac{6}{37^{20}-2}\)
Vì \(\frac{6}{37^{20}-6}>\frac{6}{37^{20}+2}\Rightarrow1+\frac{6}{37^{20}-6}>1+\frac{6}{37^{20}+2}\Rightarrow A>B\)
Ta có: \(A=\frac{37^{20}}{37^{20}:37^6}=\frac{1}{\frac{1}{37^6}}=37^6\left(1\right)\)
\(B=\frac{37^{20}.37^4}{37^{20}:37^2}=\frac{37^4}{\frac{1}{37^2}}=37^6\left(2\right)\)
Từ (1)(2) => A = B
ta thấy:
\(A=\dfrac{37^{20}}{37^{20}-6}< \dfrac{37^{20}+4}{37^{20}-6}< \dfrac{37^{20}+4}{37^{20}-2}\)
\(\Rightarrow A< \dfrac{37^{20}+4}{37^{20}-2}\)
vậy...
a, Ta có : 648 = (43)8 = 424
1612 = (42)12 = 424
Vì 424 = 424 => 648 = 1612
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
\(A=\dfrac{37^{20}}{37^{20}-6}=\dfrac{37^{20}-6+6}{37^{20}-6}=1+\dfrac{6}{37^{20}-6}\)
\(B=\dfrac{37^{20}+4}{37^{20}-2}=\dfrac{37^{20}-2+6}{37^{20}-2}=1+\dfrac{6}{37^{20}-2}\)
Do \(37^{20}-2>37^{20}-6>0\)
\(\Rightarrow\dfrac{6}{37^{20}-6}>\dfrac{6}{37^{20}-2}\)
\(\Rightarrow1+\dfrac{6}{37^{20}-6}>1+\dfrac{6}{37^{20}-2}\)
\(\Rightarrow A>B\)