Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
a)
Ta có: \(BCNN\left( {10,15} \right) = 30\) nên
\(\begin{array}{l}\dfrac{7}{{10}} = \dfrac{{7.3}}{{10.3}} = \dfrac{{21}}{{30}}\\\dfrac{{11}}{{15}} = \dfrac{{11.2}}{{15.2}} = \dfrac{{22}}{{30}}\end{array}\)
Vì \(21 < 22\) nên \(\dfrac{{21}}{{30}} < \dfrac{{22}}{{30}}\) do đó \(\dfrac{7}{{10}} < \dfrac{{11}}{{15}}\).
b)
Ta có: \(BCNN\left( {8,24} \right) = 24\) nên
\(\dfrac{{ - 1}}{8} = \dfrac{{ - 1.3}}{{8.3}} = \dfrac{{ - 3}}{{24}}\)
Vì \( - 3 > - 5\) nên \(\dfrac{{ - 3}}{{24}} > \dfrac{{ - 5}}{{24}}\) do đó \(\dfrac{{ - 1}}{8} > \dfrac{{ - 5}}{{24}}\).
\(\dfrac{-5}{8}và\dfrac{6}{-7}=\dfrac{-5}{8}và\dfrac{-6}{7}=\dfrac{-35}{56}và\dfrac{-48}{56}=>\dfrac{-35}{56}>\dfrac{-48}{56}hay\dfrac{-5}{8}>\dfrac{6}{-7}\)