Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)
22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)
3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)
3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)+ \(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))
22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)
4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
...................
\(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)
Cộng vế với vế ta có:
4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)
4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)
A < ( 2 - \(\dfrac{1}{n}\)): 4
A < 2 : 4 - \(\dfrac{1}{n}\) : 4
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)
Vậy A < \(\dfrac{1}{2}\)
a) Ta có:
+) \(\frac{10^8}{10^7}\)-1= 108-7-1=10-1=9 (1)
+) \(\frac{10^7}{10^6}\)-1= 107-6-1=10-1=9 (2)
Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1
Vậy..
có:1/4+1/5+1/6+1/7+...+1/9≤nhỏ hơn 1/6.6=1
1/10+1/11+...+1/15 nhỏ hơn1/5.5=1
⇒1/4+1/5+...+1/15nhỏ hơn1+1=2(đpcm)
ta có
\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< \dfrac{1}{4}.4\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< 1\)
và:
\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{8}.8\)
\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{15}< 1+1=2\)
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
A = 1/42 + 1/62 + 1/82 + ... + 1/(2n)2
A = 1/22.(1/22 + 1/32 + 1/42 + ... + n2)
A < 1/22.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(n-1).n
A < 1/4.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... +1/n-1 - 1/n)
A < 1/4.(1 - 1/n) < 1/4.1
A < 1/4