K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

B = 201410+2/201411+2 < 201411+2+4026 / 201412+2+4026

                                        = 201411+4028/201412+4028

                                        = 2014(201410+2)/2014(201411+2)

                                            = 201410+2/201411+2 = A

=> A > B

5 tháng 5 2016

Vì \(B=\frac{2014^{11}+2}{2014^{12}+2}<1\)

\(\Rightarrow B=\frac{2014^{11}+2}{2014^{12}+2}<\frac{2014^{11}+2+4026}{2014^{12}+2+4026}=\frac{2014^{11}+4028}{2014^{12}+4028}=\frac{2014.\left(2014^{10}+2\right)}{2014\left(2014^{11}+2\right)}=\frac{2014^{10}+2}{2014^{11}+2}=A\)

Vậy B<A hay A<B

5 tháng 5 2016

ta chứng minh bài toán phụ:

nếu ta có b<d \(\frac{a}{b}\)>\(\frac{c}{d}\) thì ad>bc

dễ thây \(\frac{ad}{bd}>\frac{cb}{bd}\)

 => ad>bd

áp dụng:

dat 2014=a ta co

\(A=\frac{a^{10}+2}{a^{11+2}}\)

 \(B=\frac{a^{11}+2}{a^{12}+2}\)

 ta có 

\(A=\frac{a^{10}+2.a^{12}+2}{a^{11}+2.a^{12}+2}\)

 \(B=\frac{a^{11}+2.a^{11}+2}{a^{12}+2.a^{11}+2}\)=\(\frac{a^{10}+2a^{12}+2}{a^{12}+2a^{11}+2}\)

 => A=B

mk hok chắc đâu nha

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

cùng nhân tử với 2014>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

6 tháng 3 2019

B>A

6 tháng 3 2019

\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)

\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)

\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)

\(\Rightarrow A< B\)

2 tháng 7 2017

Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\) 

           B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

Nên A > B 

2 tháng 7 2017

Viết hẳn từng bước đi bạn

27 tháng 3 2017

Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B

Ta có:

2014A=20142014+ 2014/20142014+1=1+2013/20142014+1

2014B=20142013+2014/20142013+1=1+2013/20142013+1

vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B

suy ra A<B

7 tháng 8 2017

ta thấy:

2^2014<2^2014+2

=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)

vậy......

7 tháng 8 2017

Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .

22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.

=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)

29 tháng 6 2017

Đặt :

\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}\)\(=1+\frac{1}{2^{2014}+1}\)

\(1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+2}\Leftrightarrow A>B\)