Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :
2^150 =(2^3)^50 =8^50
3^100 = (3^2)^50 = 9^50
vi 8<9 hay 8^50 <9^50 vay 2^150 <3^100
\(-\left(-\dfrac{1}{16}\right)^{100}=-\left(-\dfrac{1}{2^4}\right)^{100}=-\left(\dfrac{1}{2^4}\right)^{100}=-\left[\left(\dfrac{1}{2}\right)^4\right]^{100}=-\left(\dfrac{1}{2}\right)^{400}=-\dfrac{1}{2^{400}}\)
\(-\left(-\dfrac{1}{8}\right)^{150}=-\left(-\dfrac{1}{2^3}\right)^{150}=-\left(\dfrac{1}{2^3}\right)^{150}=-\left[\left(\dfrac{1}{2}\right)^3\right]^{150}=-\left(\dfrac{1}{2}\right)^{450}=-\dfrac{1}{2^{450}}\)
\(\dfrac{1}{2^{400}}>\dfrac{1}{2^{450}}\Rightarrow-\dfrac{1}{2^{400}}< -\dfrac{1}{2^{450}}\)
Vậy \(-\left(-\dfrac{1}{6}\right)^{100}< -\left(-\dfrac{1}{8}\right)^{150}\)
a.ta có: \(3^{2009}\)
\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)
*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)
Vậy \(3^{2009}\) < \(9^{1005}\).
\(-3^{150}=-9^{75}\)
\(-2^{225}=-8^{75}\)
mà -9<-8
nên \(-3^{150}< -2^{225}\)
ta có : -3^150 = (-3^2)^75= -6^75
-2^225 = (-2^3)^75=-6^75
Do 6^75 = 6^75 nên -3^150 = 2^225
Đây là cách của thầy mik dạy
Mik ko bt có đúng hay ko đâu :(
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
2100và 1030
2100=210.10=(210)10=102410
1030=103.10=(103)10=100010
1024 > 1000
=>102410 > 100010
=>2100>1030
2mũ 150 < 3 mũ 100
2150= (23)50= 850
3100= (32)50= 950
Vì 850< 950 nên 2150 < 3100
Vậy...