K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

a)                                                         b)                                                       c)

523=5.522                                                     216=213.23=213.8                               275.498=(33)5.(72)8=38.710

5.522<6.522 => 523<6.522                         213.8>7.213 =>7.213<216                      2115=(3.7)15=315.715 mà 315.715>38.710 nên  275.498> 2115

21 tháng 10 2016

sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi

22 tháng 10 2016

Bài 1

a)2711>818

b)6255>1257

c)536<1124

d)32n>23n

Bài 2

a)523<6.522

b)7.213>216

c)2115<275.498

14 tháng 7 2023

a) Ta có:

5²³ = 5.5²²

Do 6 > 5 nên 6.5²² > 5.5²²

Vậy 6.5²² > 5²³

b) Ta có:

2¹⁶ = 2³.2¹³ = 8.2¹³

Do 8 > 7 nên 8.2¹³ > 7.2¹³

Vậy 2¹⁶ > 7.2¹³

c) Ta có:

21¹⁵ = (3.7)¹⁵ = 3¹⁵.7¹⁵

27⁵.49⁸ = (3³)⁵.(7²)⁸ = 3¹⁵.7¹⁶

Do 16 > 15 nên 7¹⁶ > 7¹⁵

⇒ 3¹⁵.7¹⁶ > 3¹⁵.7¹⁵

Vậy 27⁵.49⁸ > 21¹⁵

a: 5^23=5*5^22<6*5^22

=>6*5^22 lớn hơn

b: 7<8

=>7*2^13<8*2^13=2^16

=>2^16 lớn hơn

c: 21^15=3^15*7^15

27^5*49^8=3^15*7^16

mà 15<16

nên 27^5*49^8 lớn hơn

a: 199^20=1568239201^5

2003^15=8036054027^5

=>199^20<2003^15

b: 3^99=27^33>27^21=11^21

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. 

$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$

$\Rightarrow 199^{20}< 2003^{15}$
b.

$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$

$\Rightarrow 3^{99}> 121^{11}> 11^{21}$

29 tháng 6 2021

a, Ta có : \(8>7\)

\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)

b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)

\(2003^{15}>2000^{15}=2^{60}.2^{45}\)

Thấy : \(45>40\)

\(\Rightarrow2000^{15}>200^{20}\)

\(\Rightarrow2003^{15}>199^{20}\)

c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)

\(8.101^3>9.101^2\)

\(\Rightarrow202^{303}>303^{202}\)

 

a) Ta có: \(2^{16}=2^{13}\cdot8\)

mà \(7< 8\)

nên \(7\cdot2^{13}< 2^{16}\)

b) \(199^{20}=1568239201^5\)

\(2003^{15}=8036054027^5\)

mà \(1568239201< 8036054027\)

nên \(199^{20}< 2003^{15}\)

c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}\)

mà \(202^3>303^2\)

nên \(202^{303}>303^{202}\)

17 tháng 8 2023

a) Ta có:

\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)

\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)

Mà: \(8036054027>1568239201\)

\(\Rightarrow1568239201^5< 8036054027^5\) 

\(\Rightarrow199^{20}< 2003^{15}\)

b) Xem lại đề 

18 tháng 8 2023

còn cách nào ra số nhỏ hơn ko bạn

20 tháng 2 2021

a) 536 và 1124

Ta có: 536= (53)12=12512  (1)

             1124=(112)12=12112 (2)

Từ (1) và (2) => 536>1124

tương tự.....

 

20 tháng 2 2021

Đáp án là :

câu 20 :625 < 1257

câu 21 :536 > 1124

câu 22 :32n < 23n

câu 23 :523 < 6.522

câu 24 :1124 <19920

câu 25 :399 > 112

30 tháng 11 2021

199^20 < 2003^15

30 tháng 11 2021

19920<200315

16 tháng 8 2023

2115 = (7.3)15 = 715.315

275.498 = (33)5.(72)8 = 315.716 = 7.315.715 > 315.715 = 2115

=> 275.498 > 2115.

16 tháng 8 2023

tick cho mink nhé 😊

26 tháng 8 2023

Bài 1:

   D     =      5  + 52 + 53+...+ 5100

5.D     =             52 + 53+...+5 100 + 5101

5D - D = 5101 - 5

4D       = 5101 - 5

  D      = \(\dfrac{5^{101}-5}{4}\)

26 tháng 8 2023

Bài 2:

So sánh 

a, 544 = (2.33)4 = 24.312  

    2112 = (3.7)12 = 312.712

Vì 24 < 712 nên 544 < 2112

b, 339 và 1121

    339   =   (313)3

   1121 = (117)3

     313 = (32)6.3 = 96.3 < 97 < 117 

Vậy 339  < 1121