Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= \(\frac{3^{10}+1}{3^9+1}\) đặt B= \(\frac{3^{11}+1}{3^{10}+1}\)
Vì B<1 => B< \(\frac{3^{11}+1+2}{3^{10}+1+2}\) = \(\frac{3^{11}+3}{3^{10}+3}\) = \(\frac{3\cdot\left(3^{10}+1\right)}{3\cdot\left(3^9+1\right)}\) = \(\frac{3^{10}+1}{3^9+1}\) = A
Vậy B<A
Ta có :
\(\frac{3^{11}+1}{3^{10}+1}>1\) nên \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{11}+1+2}{3^{10}+1+2}=\frac{3^{11}+3}{3^{10}+3}=\frac{3\left(3^{10}+1\right)}{3\left(3^9+1\right)}=\frac{3^{10}+1}{3^9+1}\)
Vậy \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{10}+1}{3^9+1}\)
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
Đặt C = A - 3 = \(1+3+3^2+...+3^{10}\)
\(\Rightarrow3C=3+3^2+3^3+...+3^{11}\)
\(\Rightarrow2C=3C-C=3^{11}-1\)
\(\Rightarrow C=\frac{3^{11}-1}{2}\) \(\Rightarrow A-3=\frac{3^{11}-1}{2}=\frac{3^{11}}{2}-\frac{1}{2}\)
\(\Rightarrow A=\frac{3^{11}}{2}-\frac{1}{2}+3=\frac{3^{11}}{2}+\frac{5}{2}>\frac{3^{11}}{2}=B\)
Vậy A > B
A = 1 + 3 + 32 + 33 + ....... + 310 và B = 311 / 2
Ta có A = 1 + 3 + 32 +....+ 310
3A = 3. ( 1 + 3 + .... + 310 )
3A = 3 + 32 + 33 +.......+ 311
3A - A = (3 + 32 + 33+ ...+ 311)- ( 1 + 3 + ....+ 310)
2A = 311 - 1
A = 311 - 1 / 2 thì < 311 / 2
=> A < B
Câu hỏi của Quỳnh Anh - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo câu 1 2 cách 2 bạn hướng dẫn nhé!
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
Vì 3^10+1/3^11+1 < 1
mà 3^11+1/3^10+1 > 1
suy ra:3^10+1/3^11+1 < 3^11+1/3^10+1