Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)=> M > N
b) P = \(\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.\left(2010+2\right)-2}{2010.2011+4020}=\frac{2011.2010+2011.2-2}{2010.2011+4020}=\)\(\frac{2011.2010+4020}{2010.2011+4020}=1\)
Nên P = 1
câu b sửa lại:\(P=\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.2010+4022-2}{2010.2011+4020}=\frac{2010.2011+4020}{2010.2011+4020}=1\)
\(M=\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010}{2011+2012}+\frac{2011}{2011+2012}=\frac{2010+2011}{2011+2012}=N\)
Xét biểu thức A
A= 1+(1+2) +....... +(1+2+3+...+2012)
A = 1+1+2+1+2+3+...+1+2+3+...+2012
A có 2012 số 1
có 2011 số 2
...
có 1 số 2012
A = 1 x2012 +2x2011+...+2012x1
mà B = 1 x2012 +2x2011+...+2012x1
nên A=B
\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)
\(=1\times2012+2\times2011+...+2012\times1\)
\(=B\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=1-\(\dfrac{1}{2011}\)+1\(-\dfrac{1}{2012}\)+1-\(\dfrac{1}{2013}\)+1-\(\dfrac{1}{2011}\)
=4-(\(\dfrac{2}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\)) < 4
m=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=\(1-\dfrac{1}{2011}+1-\dfrac{1}{2012}+1-\dfrac{1}{2013}+1+\dfrac{2}{2011}\)
=4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\)
vì:
do \(\dfrac{1}{2011}< 1\)
\(\dfrac{1}{2012}< 1\)
\(\dfrac{1}{2013}< 1\)
nên \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 1-1-1=-1\)
hay \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 0\)
nên 4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 4\)
vậy tổng m <4
bài này mình tưởng phải lên cấp 2 mới có thế mà mấy em lớp 4 đã phải làm á
ta có: \(N=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012};\frac{2011}{2012}>\frac{2011}{2011+2012}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
=> M>N