Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2000/2001<1
2001/2002<1
2002/2003<1
...
2015/2016<1
=>2000/2001+2001/2002+2002/2003+2003/2004+...+2015/2016<1+1+1+1+1+...+1=15
Vậy...
Ta có : \(\dfrac{2005}{2007}=1-\dfrac{2}{2007};\dfrac{2007}{2009}=1-\dfrac{2}{2009}\)
\(Do:\dfrac{2}{2007}>\dfrac{2}{2009}\Rightarrow1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)
\(\Rightarrow\dfrac{2005}{2007}< \dfrac{2007}{2009}\)
Ta có :
2005/2007=2007-2/2007=2007/2007 -2/2007=1 -2/2007
2007/2009 =2009-2007/2009=2009/2009 -2/2009=1-2009
vì 2007<2009 nên 2/2007>2/2009
⇒1-2/2007 <1-2/2009
⇒2005/2007 <2007/2009
Tham khảo nhé !
Ta có : \(\dfrac{2005}{2007}=2007-\dfrac{2}{2007}=\dfrac{2007}{2007}-\dfrac{2}{2007}=1-\dfrac{2}{2007}\)
\(\dfrac{2007}{2009}=2009-\dfrac{2007}{2009}=\dfrac{2009}{2009}-\dfrac{2}{2009}=1-2009\)
Vì \(2007<2009\) nên \(\dfrac{2}{2007}>\dfrac{2}{2009}\)
\(1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)
\(\dfrac{2005}{2007}< \dfrac{2007}{2009}\)
Ta có 1-2000/2001=1/2001
1-2001/2002=1/2002
Mà 1/2001>1/2002
=>2000/2001<2001/2002
Ta có 1-2000/2001=1/2001
1-2001/2002=1/2002
Mà 1/2001>1/2002
=>2000/2001<2001/2002
+ \(\frac{2000}{2001}=\frac{2001-1}{2001}=1-\frac{1}{2001}\)
+ \(\frac{2001}{2002}=\frac{2002-1}{2002}=1-\frac{1}{2002}\)
+ \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}
\(1-\frac{2000}{2001}=\frac{1}{2001}\)
\(1-\frac{2001}{2002}=\frac{1}{2002}\)
Vì \(\frac{1}{2001}>\frac{1}{2002}\) nên \(\frac{2000}{2001}
Ta có: 2000/2001 = 1 - 1/2001
2001/2002 = 1 - 1/2002
mà 1/2001 > 1/2002
--> 1 - 1/2001 < 1 - 1/2002
--> 2000/2001 < 2001/2002
13/27 và 7/15
\(\frac{13}{27}\) = 1:\(\frac{27}{13}\)= 1: \(\frac{26+1}{13}\) = 1: ( 2+\(\frac{1}{13}\))
\(\frac{7}{15}\)= 1:\(\frac{15}{7}\)= 1: \(\frac{14+1}{7}\)= 1: ( 2+ \(\frac{1}{7}\))
ta có \(\frac{1}{13}\)< \(\frac{1}{7}\)=> 2+\(\frac{1}{13}\)< 2+ \(\frac{1}{7}\) => 1: ( 2+\(\frac{1}{13}\)) > 1: ( 2+ \(\frac{1}{7}\))
vậy \(\frac{13}{27}\)>\(\frac{7}{15}\)- 2000/2001 và 2001/2002
\(\frac{2000}{2001}\)= \(\frac{2001-1}{2001}\)= 1 - \(\frac{1}{2001}\)
\(\frac{2001}{2002}\)= \(\frac{2002-1}{2002}\)= 1 - \(\frac{1}{2002}\)
ta có \(\frac{1}{2001}\)> \(\frac{1}{2002}\) => 1 - \(\frac{1}{2001}\) < 1 - \(\frac{1}{2002}\)
vậy \(\frac{2000}{2001}\)< \(\frac{2001}{2002}\)
\(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(2001< 2002\Rightarrow\frac{1}{2001}>\frac{1}{2001}\)
\(\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
ta có:2000/2001=1-1/2001
2001/2002=1-1/2002
mà 2001<2002
suy ra 1/2001>1/2002
suy ra 1-1/2001<1-1/2002
vậy 2000/2001<2001/2002
>
>