Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)
\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)
\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)
\(B=\frac{8}{303}\)
\(A.B=\frac{8}{303}.\frac{3}{200}\)
\(A.B=\frac{1}{2525}\)
b, A = 1/2 x 3/100
B = 2/3 x 4/101
Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2
MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)
Ta có : 1 - 3/100 = 97/100
1 - 4/101 = 97/101
Mà 97/101 < 97/100 => 4/101 > 3/100 (2)
Từ (1) và (2) => B > A
a,
\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
b,
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)
Ta có:
\(2^2<4^2\Rightarrow\frac{1}{2^2}>\frac{1}{4^2}\)
\(3^2<6^2\Rightarrow\frac{1}{3^2}>\frac{1}{6^2}\)
\(4^2<8^2\Rightarrow\frac{1}{4^2}<\frac{1}{8^2}\)
\(...\)
\(100^2<200^2\Rightarrow\frac{1}{100^2}>\frac{1}{200^2}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A>B\)